central apennines
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 143)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 248
Author(s):  
Stefano Barbieri ◽  
Saverio Di Fabio ◽  
Raffaele Lidori ◽  
Francesco L. Rossi ◽  
Frank S. Marzano ◽  
...  

Meteorological radar networks are suited to remotely provide atmospheric precipitation retrieval over a wide geographic area for severe weather monitoring and near-real-time nowcasting. However, blockage due to buildings, hills, and mountains can hamper the potential of an operational weather radar system. The Abruzzo region in central Italy’s Apennines, whose hydro-geological risks are further enhanced by its complex orography, is monitored by a heterogeneous system of three microwave radars at the C and X bands with different features. This work shows a systematic intercomparison of operational radar mosaicking methods, based on bi-dimensional rainfall products and dealing with both C and X bands as well as single- and dual-polarization systems. The considered mosaicking methods can take into account spatial radar-gauge adjustment as well as different spatial combination approaches. A data set of 16 precipitation events during the years 2018–2020 in the central Apennines is collected (with a total number of 32,750 samples) to show the potentials and limitations of the considered operational mosaicking approaches, using a geospatially-interpolated dense network of regional rain gauges as a benchmark. Results show that the radar-network pattern mosaicking, based on the anisotropic radar-gauge adjustment and spatial averaging of composite data, is better than the conventional maximum-value merging approach. The overall analysis confirms that heterogeneous weather radar mosaicking can overcome the issues of single-frequency fixed radars in mountainous areas, guaranteeing a better spatial coverage and a more uniform rainfall estimation accuracy over the area of interest.


2021 ◽  
Vol 787 ◽  
pp. 32-52
Author(s):  
Barbara Valle ◽  
Claudio Cucini ◽  
Francesco Nardi ◽  
Marco Caccianiga ◽  
Mauro Gobbi ◽  
...  

We describe and delimit with integrative taxonomy the new springtail species Desoria calderonis sp. nov. (Collembola: Isotomidae). This cryophilic species is strictly linked to the supraglacial stony debris of the isolated Calderone glacier (Central Apennines, Italy), one of the southernmost glaciers of Europe. Desoria calderonis sp. nov. could belong to the nivalis-complex, a group of European mountain species included in the violacea-group. Genetic analysis (COI mtDNA barcoding) confirms the morphological attribution to the genus Desoria Nicolet in Desor, 1841, but highlights that the genus, in its current definition, is polyphyletic. We specify the peculiar micro-habitat preferences and highlight the threat of extinction for this cryophilic species in the context of the ongoing climate change and subsequent risk of complete disappearance of the glacier.


2021 ◽  
pp. 1-17
Author(s):  
Marco Mercuri ◽  
Luca Smeraglia ◽  
Manuel Curzi ◽  
Stefano Tavani ◽  
Roberta Maffucci ◽  
...  

Abstract Bedding-perpendicular joints striking parallel (longitudinal) and perpendicular (transverse) to both the axis of the hosting anticline and the trend of the foredeep-belt system are widely recognized in fold-and-thrust belts. Their occurrence has been commonly attributed to folding-related processes, such as syn-folding outer-arc extension, although they can also be consistent with a pre-folding foredeep-related fracturing stage. Here we report the pre-folding fracture pattern affecting the Pietrasecca Anticline, in the central Apennines (Italy), resolved by a detailed field structural analysis. Field observations, scan-lines and interpretation of virtual outcrops were used to study the intensity, distribution and the orientations of fracture pattern along the anticline. The fracture pattern of the Pietrasecca Anticline consists of longitudinal and transverse joints, oriented approximately perpendicular to bedding, and of a pre-folding longitudinal pressure-solution cleavage set, which is oblique to bedding regardless of the bedding dip. Cross-cutting relationships show that joints predated the development of the pressure-solution cleavage. Furthermore, joint intensity does not relate to the structural position along the anticline. Taken together, these observations suggest that jointing occurred in a foredeep environment before the Pietrasecca Anticline growth. Our work further demonstrates that joints striking parallel and orthogonal to the main fold axis do not necessarily represent syn-folding deformation structures.


Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Paolo Galli ◽  
Edoardo Peronace ◽  
Paolo Messina

We present the first evidence of surface rupture along the causative fault of the 14 January 1703 earthquake (Mw 6.9, Italian central Apennines). This event was sourced by the ~30 km-long, Norcia fault system, responsible for another catastrophic event in Roman times, besides several destructive earthquakes in the last millennium. A dozen paleoseismological excavations have already investigated the surface ruptures occurred during the Holocene along the Cascia-Mt Alvagnano segments, as well as along secondary splays close to the Medieval Norcia Walls. Remarkably, the master fault bounding the Norcia-Campi basins have never be proved to rupture at the surface. An antique limekiln that was improvidently set across the main fault scarp provides the amazing evidence of an abrupt offset in the 1703 earthquake, which likely occurred during a liming process of carbonate stones. Obviously, the limekiln became useless, and was progressively buried by slope debris. The amount of the offset and the kinematics indicators surveyed in the site allow the strengthening of our knowledge on the seismogenic potential of the Norcia fault system, on its geomorphic rule, and on its impact on the human activities.


2021 ◽  
Vol 21 (19) ◽  
pp. 523-532
Author(s):  
Riccardo Manni ◽  
Rolando Di Nardo

A new paracomatulid crinoid, Tiburtocrinus toarcensis gen. et sp. nov., is described from the Lower Jurassic of Tivoli (central Apennines, Italy). This type of stemless crinoids has never previously been recorded in Italy, and this report bridges a significant gap. Morphofunctional analysis of the radial facets suggests that Tiburtocrinus toarcensis gen. et sp. nov. may have been a crawling paracomatulid, very different from other paracomatulids that probably swam.


Author(s):  
M. M. C. Carafa ◽  
D Di Naccio ◽  
C. Di Lorenzo ◽  
V. Kastelic ◽  
P. Bird

2021 ◽  
Vol 58 (2) ◽  
pp. 15-28
Author(s):  
Giulio Tesei ◽  
Marina Allegrezza ◽  
Sandro Ballelli ◽  
Giampiero Ciaschetti ◽  
Carlo Console ◽  
...  

This paper represents the first syntaxonomic study on the Pinus nigra subsp. nigra artificial stands in the Apennines. It refers exclusively to the mature Pinus nigra forest plantations in the central Apennines that were planted before the 1950s, and then not managed. The mature Pinus nigra forest plantations in the central Apennines are distributed within four National Parks, on limestone substrata, mainly with southern aspects and rugged slopes, and at elevations ranging from 655 m to 1670 m a.s.l.. Two new phytosociological associations are described here and classified in the alliance Junipero communis–Pinion nigrae: Orthilio secundae–Pinetum nigrae and Digitalidi micranthae–Pinetum nigrae. The association Orthilio secundae–Pinetum nigrae comprises the relative mesophilous mature pine forests of the supratemperate thermotype in the plant landscape context of the alliance Aremonio agrimonioidis–Fagion sylvaticae potential vegetation belt. The Digitalidi micranthae–Pinetum nigrae comprises the thermophilous pine forests occurring on rocky stands within mesotemperate and lower supratemperate thermotypes in the potential belt of alliance Carpinion orientalis woods. The comparison of these two new associations and the phytosociological literature concerning the natural communities of Pinus nigra in the Apennines highlights their floristic and coenological autonomy.


AAPG Bulletin ◽  
2021 ◽  
Vol 105 (12) ◽  
pp. 2449-2476
Author(s):  
Stefano Torrieri ◽  
Chadia Volery ◽  
Loï Bazalgette ◽  
Christoph G. E. Strauss

Author(s):  
Maria Giuditta Fellin ◽  
Malwina San Jose ◽  
Claudio Faccenna ◽  
Sean D. Willett ◽  
Domenico Cosentino ◽  
...  

Stratigraphic and thermochronologic data are used to study the processes that shaped the topography of the central Apennines of Italy. These are part of a major, active mountain belt in the center of the Mediterranean area, where several subduction zones control a complex topography. The Apennines were shaped by contraction at the front of the accretionary wedge overlying the subducting Adria microplate followed by extension at the wedge rear in response to eastward slab roll-back. In the central Apennines, intermontane extensional basins on the western flank rise eastward toward the summit. We contribute with new data consisting of 28 (U-Th-Sm)/He and 10 fission track ages on apatites to resolve a complex pattern of thermal histories in time and space, which we interpret as reflecting the transitional state of the orogen, undergoing a two-phase evolution related to initial slab retreat, followed by slab detachment. Along the Tyrrhenian coast, we document cooling from depths ≥3−4 km occurring between 8 and 5 Ma and related to the opening of marine extensional basins. Post−5 Ma, a broader region of the central Apennines exhibits cooling from variable depths, between <2 km in most areas and ≥3−4 km in the northeast, and with different onset times: at ca. 4 Ma in the west, at ca. 2.5 Ma in the center and northeast, and at ca. 1 Ma in the southeast. Between 5 and 2.5 Ma, exhumation is associated with modest topographic growth during the late stages of thrusting. Since 2.5 Ma, exhumation has concurred with the opening of intermontane basins in the west and in the east, with regional topographic growth and erosion, that we interpret to be associated with the locally detaching slab.


2021 ◽  
Vol 64 (4) ◽  
pp. SE435
Author(s):  
Laura Leonilde Alfonsi ◽  
Francesca Romana Cinti

he focus of this study is the analysis of a cave in Central Italy, the Beatrice Cenci cave, in order to point out and constrain evidence of possible past earthquakes and of fault activity in the area. We performed a survey of seismic related damages within the cave. This included the analysis of broken/collapsed speleothems, the recognition of structural collapse, of tilting/growth alteration in the speleothems, and the mapping of fractures, joints and/or faults. To timely set the occurrence of the recognized damage, organic sediments were dated with 14C radiocarbon method. The results merged toward the recognition of two distinct seismic shaking events affecting the cave environment, one older than 30 kyr and another around 7 kyr. The deformation observed within the cave led us to the hypothesis that the events of damage were possibly linked to the activity of the regional tectonic lineament that crosses the cave, i.e., the Liri normal fault. The morphology and the evolution of the cave appear controlled by the fault zone. These speleoseismological results provided a new contribution on the knowledge of the past activity of the Liri fault and on the earthquake history of this sector of Central Apennines.


Sign in / Sign up

Export Citation Format

Share Document