Poincare Problem and Classification of Irregular Singular Points for Linear Differential Equations with Holomorphic Coefficients

Author(s):  
Maria V. Korovina ◽  
Vladimir Yu. Smirnov
1994 ◽  
Vol 1 (3) ◽  
pp. 315-323
Author(s):  
František Neuman

Abstract A classification of classes of equivalent linear differential equations with respect to ω-limit sets of their canonical representatives is introduced. Some consequences of this classification to the oscillatory behavior of solution spaces are presented.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 230
Author(s):  
Juan-Carlos Cortés ◽  
Ana Navarro-Quiles ◽  
José-Vicente Romero ◽  
María-Dolores Roselló

In this contribution, we construct approximations for the density associated with the solution of second-order linear differential equations whose coefficients are analytic stochastic processes about regular-singular points. Our analysis is based on the combination of a random Fröbenius technique together with the random variable transformation technique assuming mild probabilistic conditions on the initial conditions and coefficients. The new results complete the ones recently established by the authors for the same class of stochastic differential equations, but about regular points. In this way, this new contribution allows us to study, for example, the important randomized Bessel differential equation.


Sign in / Sign up

Export Citation Format

Share Document