On the Remainders of Asymptotic Expansions of Solutions of Linear Differential Equations near Irregular Singular Points of Higher Rank

1999 ◽  
Vol 205 (1) ◽  
pp. 89-113 ◽  
Author(s):  
Reinhard Hoeppner ◽  
Reinhard Schäfke
Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 230
Author(s):  
Juan-Carlos Cortés ◽  
Ana Navarro-Quiles ◽  
José-Vicente Romero ◽  
María-Dolores Roselló

In this contribution, we construct approximations for the density associated with the solution of second-order linear differential equations whose coefficients are analytic stochastic processes about regular-singular points. Our analysis is based on the combination of a random Fröbenius technique together with the random variable transformation technique assuming mild probabilistic conditions on the initial conditions and coefficients. The new results complete the ones recently established by the authors for the same class of stochastic differential equations, but about regular points. In this way, this new contribution allows us to study, for example, the important randomized Bessel differential equation.


2020 ◽  
pp. 1-32
Author(s):  
T. M. Dunster ◽  
A. Gil ◽  
J. Segura

Recently, the present authors derived new asymptotic expansions for linear differential equations having a simple turning point. These involve Airy functions and slowly varying coefficient functions, and were simpler than previous approximations, in particular being computable to a high degree of accuracy. Here we present explicit error bounds for these expansions which only involve elementary functions, and thereby provide a simplification of the bounds associated with the classical expansions of Olver.


Sign in / Sign up

Export Citation Format

Share Document