oscillatory behavior
Recently Published Documents


TOTAL DOCUMENTS

1114
(FIVE YEARS 240)

H-INDEX

49
(FIVE YEARS 10)

Author(s):  
Mohammad Alipour zadeh ◽  
Yaser Hajati ◽  
Imam Makhfudz

Abstract Existing resonant tunneling modes in the shape of line-type resonances can improve the transport properties of the junction. Motivated by the unique structural properties of monolayer WSe2 e.g. significant spin-orbit coupling (SOC) and large direct bandgap, the transport properties of a normal/ferromagnetic/normal (NFN) WSe2 junction with large incident angles in the presence of exchange field (h), off-resonance light (∆Ω) and gate voltage (U) is studied. In a certain interval of U, the transmission shows a gap with optically controllable width, while outside it, the spin and valley resolved transmissions have an oscillatory behavior with respect to U. By applying ∆Ω (h), an optically (electrically) switchable perfect spin and valley polarizations at all angles of incidence have been found. For large incident angles, the transmission resonances change to spin-valley-dependent separated ideal line-type resonant peaks with respect to U, resulting in switchable perfect spin and valley polarizations, simultaneously. Furthermore, even in the absence of U, applying h or ∆Ω at large incident angles can give some spin-valley dependent ideal transmission peaks, making h or ∆Ω a transmission valve capable of giving a switchable fully spinvalley filtering effect. These findings suggest some alternate methods for providing high-efficiency spin and valley filtering devices based on WSe2.


2022 ◽  
Author(s):  
B. Kodess

Abstract. The structural characteristics of samples of a four-component superconducting material (YBCO) after exposure to X-ray irradiation during a long time are investigated. The effect of X-ray beam processing on angular positions (corresponding parameters of the crystal lattice) and the width of Bragg reflections is established. The phenomenon of oscillatory behavior in the unit cell dimension with long-time irradiation is found. The analysis of the profiles of reflection also demonstrates the presence of reversible changes phase composition with the exposure time. The observed phenomena reflect the presence of a nontrivial and specific process of compression and expansion of the unit cell due to the accumulation and then disengagement outside of ionized oxygen, which is formed under such irradiation exposure on the surface of the samples.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ranran Zhang ◽  
Qiuling Zhao ◽  
Xia Wang ◽  
Kai Ming Lau ◽  
Tsz Kit Yung ◽  
...  

Abstract Metasurfaces with ultrathin artificial structures have attracted much attention because of their unprecedented capability in light manipulations. The recent development of metasurfaces with controllable responses opens up new opportunities in various applications. Moreover, metasurfaces composed of twisted chiral structures can generate asymmetric responses for opposite incidence, leading to more degrees of freedom in wave detections and controls. However, most past studies had focused on the amplitude responses, not to mention using bi-directional phase responses, in the characterization and light manipulation of chiral metasurfaces. Here, we report a birefringent interference approach to achieve a controllable asymmetric bi-directional transmission phase from planar chiral metasurface by tuning the orientation of the metasurface with respect to the optical axis of an add-on birefringent substrate. To demonstrate our approach, we fabricate planar Au sawtooth nanoarray metasurface and measure the asymmetric transmission phase of the metasurface placed on a birefringent sapphire crystal slab. The Au sawtooth metasurface-sapphire system exhibits large oscillatory behavior for the asymmetric transmission phase with the tuning parameter. We confirm our experimental results by Jones matrix calculations using data obtained from full-wave simulations for the metasurface. Our approach in the characterization and light manipulation of metasurfaces with controllable responses is simple and nondestructive, enabling new functionalities and potential applications in optical communication, imaging, and remote sensing.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 346
Author(s):  
Belgees Qaraad ◽  
Osama Moaaz ◽  
Shyam Sundar Santra ◽  
Samad Noeiaghdam ◽  
Denis Sidorov ◽  
...  

In this paper, we consider a class of quasilinear third-order differential equations with a delay argument. We establish some conditions of such certain third-order quasi-linear neutral differential equation as oscillatory or almost oscillatory. Those criteria improve, complement and simplify a number of existing results in the literature. Some examples are given to illustrate the importance of our results.


2021 ◽  
Vol 50 (4) ◽  
pp. 736-751
Author(s):  
Ludmila Vesjolaja ◽  
Bjørn Glemmestad ◽  
Bernt Lie

Granulation is a particle enlargement process during which fine particles or atomizable liquids are converted into granules via a series of complex granulation mechanisms. In this paper, two feedback control strategies are implemented to make granulation loop processes more steady to operate, i.e., to suppress oscillatory behavior in the produced granule sizes. In the first control strategy, a classical proportional-integral (PI) controller is used, while in the second, a double-loop control strategy is used to control the median diameter of the granules leaving the granulator. The simulation results showed that using the proposed control design for the granulation loop can eliminate the oscillatory behaviour in the produced granule median diameter and make granulation loop processes more steady to operate. A comparison between the two proposed control strategies showed that it is preferable to use the double-loop control strategy.


Author(s):  
Kulsoom Rahim ◽  
Humaira Akram ◽  
Kashif Sabeeh

Abstract In this work we investigate the influence of quadratic in momentum term (Schrodinger term) on magneto-transport properties of thin film topological insulators. The Schrodinger term modifies the Dirac cones into an hourglass shape which results in inter and intraband Landau levels crossings. Breaking of the particle-hole symmetry in Landau level spectrum in the presence of k2 term leads to asymmetrical density of states profile. We calculate collisional and Hall conductivity for mixed Dirac-Schrodinger system in linear response regime and show oscillatory behavior in collisional con- ductivity, while Zeeman and hybridization terms provide a doubly split peak structure in collisional conductivity for the case m/me → ∞. We calculate Hall conductivity analytically and show that for mixed system filling factor is not symmetric about Fermi energy unlike symmetic plateaus for pure Dirac case.


2021 ◽  
Vol 922 (2) ◽  
pp. 123
Author(s):  
S. Sabri ◽  
H. Ebadi ◽  
S. Poedts

Abstract The behavior of current density accumulation around the sharp gradient of magnetic field structure or a 3D magnetic null point and with the presence of finite plasma pressure is investigated. It has to be stated that in this setup, the fan plane locates at the xy plane and the spine axis aligns along the z-axis. Current density generation in presence of the plasma pressure that acts as a barrier for developing current density is less well understood. The shock-capturing Godunov-type PLUTO code is used to solve the magnetohydrodynamic set of equations in the context of wave-plasma energy transfer. It is shown that propagation of Alfvén waves in the vicinity of a 3D magnetic null point leads to current density excitations along the spine axis and also around the magnetic null point. Besides, it is pointed out the x component of current density has oscillatory behavior while the y and z components do not show this property. It is plausible that it happens because the fan plane encompasses separating unique topological regions, while the spine axis does not have this characteristic and is just a line without separate topological regions. Besides, current density generation results in plasma flow. It is found that the y component of the current density defines the x component of the plasma flow behavior, and the x component of the current density prescribes the behavior of the y component of the plasma flow.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linfeng Ai ◽  
Enze Zhang ◽  
Jinshan Yang ◽  
Xiaoyi Xie ◽  
Yunkun Yang ◽  
...  

AbstractSuperconductor-ferromagnet interfaces in two-dimensional heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making atomically-sharp interfaces from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. The critical current and corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Also, we observe a central minimum of critical current in some JJ devices as well as a nontrivial phase shift in SQUID structures, evidencing the coexistence of 0 and π phase in the junction region. Our study paves the way to exploring sensitive probes of weak magnetism and multifunctional building-blocks for phase-related superconducting circuits using vdW heterostructures.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Faiz Muhammad Khan ◽  
Amjad Ali ◽  
Nawaf Hamadneh ◽  
Abdullah ◽  
Md Nur Alam

Schnakenberg model is known as one of the influential model used in several biological processes. The proposed model is an autocatalytic reaction in nature that arises in various biological models. In such kind of reactions, the rate of reaction speeds up as the reaction proceeds. It is because when a product itself acts as a catalyst. In fact, model endows fractional derivatives that got great advancement in the investigation of mathematical modeling with memory effect. Therefore, in the present paper, the authors develop a scheme for the solution of fractional order Schnakenberg model. The proposed model describes an auto chemical reaction with possible oscillatory behavior which may have several applications in biological and biochemical processes. In this work, the authors generalized the concept of integer order Schnakenberg model to fractional order Schnakenberg model. We provided the approximate solution for the underlying generalized nonlinear Schnakenberg model in the sense of Caputo differential operator via Laplace Adomian decomposition method (LADM). Furthermore, we established the general scheme for the considered model in the form of infinite series by the aforementioned technique. The consequent results obtained by the proposed technique ensure that LADM is an effective and accurate techniques to handle nonlinear partial differential equations as compared to the other available numerical techniques. Finally, the obtained numerical solution is visualized graphically by MATLAB to describe the dynamics of desired solution.


Sign in / Sign up

Export Citation Format

Share Document