Pareto-Weighted-Sum-Tuning: Learning-to-Rank for Pareto Optimization Problems

Author(s):  
Harry Wang ◽  
Brian T. Denton
Algorithms ◽  
2014 ◽  
Vol 7 (1) ◽  
pp. 166-185 ◽  
Author(s):  
Wilfried Jakob ◽  
Christian Blume

Optimization ◽  
1996 ◽  
Vol 38 (1) ◽  
pp. 23-37 ◽  
Author(s):  
W. W. Breckner ◽  
A. Göpfert

Author(s):  
Cristina Bazgan ◽  
Stefan Ruzika ◽  
Clemens Thielen ◽  
Daniel Vanderpooten

AbstractWe determine the power of the weighted sum scalarization with respect to the computation of approximations for general multiobjective minimization and maximization problems. Additionally, we introduce a new multi-factor notion of approximation that is specifically tailored to the multiobjective case and its inherent trade-offs between different objectives. For minimization problems, we provide an efficient algorithm that computes an approximation of a multiobjective problem by using an exact or approximate algorithm for its weighted sum scalarization. In case that an exact algorithm for the weighted sum scalarization is used, this algorithm comes arbitrarily close to the best approximation quality that is obtainable by supported solutions – both with respect to the common notion of approximation and with respect to the new multi-factor notion. Moreover, the algorithm yields the currently best approximation results for several well-known multiobjective minimization problems. For maximization problems, however, we show that a polynomial approximation guarantee can, in general, not be obtained in more than one of the objective functions simultaneously by supported solutions.


2021 ◽  
Author(s):  
Tu Nguyen ◽  
Diep Nguyen ◽  
Marco Di Renzo ◽  
Rui Zhang

Reconfigurable surfaces (RS) have recently emerged as an enabler for smart radio environments where they are used to actively tailor/control the radio propagation (e.g., to support users under adverse channel conditions). If multiple RSs are deployed (e.g., coated on various buildings) to support different groups of users, it is critical to jointly optimize the phase-shifts of all RSs to mitigate their interference as well as to leverage the secondary reflections amongst them. Motivated by the above, this paper considers the uplink transmissions of multiple users that are grouped and supported by multiple RSs to communicate with a multi-antenna base station (BS). We first formulate two optimization problems: the weighted sum-rate maximization and the minimum achievable rate (from all users) maximization. Unlike existing works that considered single user or single RS or multiple RSs without inter-RS reflections, the considered problems require one to optimize the phase-shifts of all RSs' elements and all beamformers at the multi-antenna BS. The two problems turn out to be non-convex and thus are difficult to be solved in general. Moreover, the inter-RS reflections give rise to the coupling of the phase-shifts amongst RSs, making the optimization problems even more challenging to solve. To tackle them, we design alternating optimization algorithms that provably converge to locally optimal solutions. Simulation results reveal that by properly managing interference and leveraging the secondary reflections amongst RSs, there is a great benefit of deploying more RSs to support different groups of users and so as to achieve a higher rate per user. This gain is even more significant with a larger number of elements per RS. In contrast, without properly managing the secondary reflections, increasing the number of RSs can adversely impact the network throughput, especially for higher transmit power.<br>


2016 ◽  
Vol 444 (2) ◽  
pp. 881-899 ◽  
Author(s):  
César Gutiérrez ◽  
Rubén López ◽  
Vicente Novo

Author(s):  
Olivier Roussel ◽  
Vasco Manquinho

Pseudo-Boolean and cardinality constraints are a natural generalization of clauses. While a clause expresses that at least one literal must be true, a cardinality constraint expresses that at least n literals must be true and a pseudo-Boolean constraint states that a weighted sum of literals must be greater than a constant. These contraints have a high expressive power, have been intensively studied in 0/1 programming and are close enough to the satisfiability problem to benefit from the recents advances in this field. Besides, optimization problems are naturally expressed in the pseudo-Boolean context. This chapter presents the inference rules on pseudo-Boolean constraints and demonstrates their increased inference power in comparison with resolution. It also shows how the modern satisfiability algorithms can be extended to deal with pseudo-Boolean constraints.


2021 ◽  
Author(s):  
Tu Nguyen ◽  
Diep Nguyen ◽  
Marco Di Renzo ◽  
Rui Zhang

Reconfigurable surfaces (RS) have recently emerged as an enabler for smart radio environments where they are used to actively tailor/control the radio propagation (e.g., to support users under adverse channel conditions). If multiple RSs are deployed (e.g., coated on various buildings) to support different groups of users, it is critical to jointly optimize the phase-shifts of all RSs to mitigate their interference as well as to leverage the secondary reflections amongst them. Motivated by the above, this paper considers the uplink transmissions of multiple users that are grouped and supported by multiple RSs to communicate with a multi-antenna base station (BS). We first formulate two optimization problems: the weighted sum-rate maximization and the minimum achievable rate (from all users) maximization. Unlike existing works that considered single user or single RS or multiple RSs without inter-RS reflections, the considered problems require one to optimize the phase-shifts of all RSs' elements and all beamformers at the multi-antenna BS. The two problems turn out to be non-convex and thus are difficult to be solved in general. Moreover, the inter-RS reflections give rise to the coupling of the phase-shifts amongst RSs, making the optimization problems even more challenging to solve. To tackle them, we design alternating optimization algorithms that provably converge to locally optimal solutions. Simulation results reveal that by properly managing interference and leveraging the secondary reflections amongst RSs, there is a great benefit of deploying more RSs to support different groups of users and so as to achieve a higher rate per user. This gain is even more significant with a larger number of elements per RS. In contrast, without properly managing the secondary reflections, increasing the number of RSs can adversely impact the network throughput, especially for higher transmit power.<br>


Sign in / Sign up

Export Citation Format

Share Document