exact algorithm
Recently Published Documents


TOTAL DOCUMENTS

698
(FIVE YEARS 204)

H-INDEX

48
(FIVE YEARS 9)

2022 ◽  
Vol 40 (2) ◽  
pp. 1-24
Author(s):  
Franco Maria Nardini ◽  
Roberto Trani ◽  
Rossano Venturini

Modern search services often provide multiple options to rank the search results, e.g., sort “by relevance”, “by price” or “by discount” in e-commerce. While the traditional rank by relevance effectively places the relevant results in the top positions of the results list, the rank by attribute could place many marginally relevant results in the head of the results list leading to poor user experience. In the past, this issue has been addressed by investigating the relevance-aware filtering problem, which asks to select the subset of results maximizing the relevance of the attribute-sorted list. Recently, an exact algorithm has been proposed to solve this problem optimally. However, the high computational cost of the algorithm makes it impractical for the Web search scenario, which is characterized by huge lists of results and strict time constraints. For this reason, the problem is often solved using efficient yet inaccurate heuristic algorithms. In this article, we first prove the performance bounds of the existing heuristics. We then propose two efficient and effective algorithms to solve the relevance-aware filtering problem. First, we propose OPT-Filtering, a novel exact algorithm that is faster than the existing state-of-the-art optimal algorithm. Second, we propose an approximate and even more efficient algorithm, ϵ-Filtering, which, given an allowed approximation error ϵ, finds a (1-ϵ)–optimal filtering, i.e., the relevance of its solution is at least (1-ϵ) times the optimum. We conduct a comprehensive evaluation of the two proposed algorithms against state-of-the-art competitors on two real-world public datasets. Experimental results show that OPT-Filtering achieves a significant speedup of up to two orders of magnitude with respect to the existing optimal solution, while ϵ-Filtering further improves this result by trading effectiveness for efficiency. In particular, experiments show that ϵ-Filtering can achieve quasi-optimal solutions while being faster than all state-of-the-art competitors in most of the tested configurations.


Author(s):  
Velin Kralev ◽  
Radoslava Kraleva ◽  
Viktor Ankov ◽  
Dimitar Chakalov

<span lang="EN-US">This research focuses on the k-center problem and its applications. Different methods for solving this problem are analyzed. The implementations of an exact algorithm and of an approximate algorithm are presented. The source code and the computation complexity of these algorithms are presented and analyzed. The multitasking mode of the operating system is taken into account considering the execution time of the algorithms. The results show that the approximate algorithm finds solutions that are not worse than two times optimal. In some case these solutions are very close to the optimal solutions, but this is true only for graphs with a smaller number of nodes. As the number of nodes in the graph increases (respectively the number of edges increases), the approximate solutions deviate from the optimal ones, but remain acceptable. These results give reason to conclude that for graphs with a small number of nodes the approximate algorithm finds comparable solutions with those founds by the exact algorithm.</span>


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

This paper introduces a new approach of hybrid meta-heuristics based optimization technique for decreasing the computation time of the shortest paths algorithm. The problem of finding the shortest paths is a combinatorial optimization problem which has been well studied from various fields. The number of vehicles on the road has increased incredibly. Therefore, traffic management has become a major problem. We study the traffic network in large scale routing problems as a field of application. The meta-heuristic we propose introduces new hybrid genetic algorithm named IOGA. The problem consists of finding the k optimal paths that minimizes a metric such as distance, time, etc. Testing was performed using an exact algorithm and meta-heuristic algorithm on random generated network instances. Experimental analyses demonstrate the efficiency of our proposed approach in terms of runtime and quality of the result. Empirical results obtained show that the proposed algorithm outperforms some of the existing technique in term of the optimal solution in every generation.


2022 ◽  
Vol 24 (3) ◽  
pp. 1-18
Author(s):  
Mohamed Yassine Hayi ◽  
Zahira Chouiref ◽  
Hamouma Moumen

This paper introduces a new approach of hybrid meta-heuristics based optimization technique for decreasing the computation time of the shortest paths algorithm. The problem of finding the shortest paths is a combinatorial optimization problem which has been well studied from various fields. The number of vehicles on the road has increased incredibly. Therefore, traffic management has become a major problem. We study the traffic network in large scale routing problems as a field of application. The meta-heuristic we propose introduces new hybrid genetic algorithm named IOGA. The problem consists of finding the k optimal paths that minimizes a metric such as distance, time, etc. Testing was performed using an exact algorithm and meta-heuristic algorithm on random generated network instances. Experimental analyses demonstrate the efficiency of our proposed approach in terms of runtime and quality of the result. Empirical results obtained show that the proposed algorithm outperforms some of the existing technique in term of the optimal solution in every generation.


2022 ◽  
Vol 13 (2) ◽  
pp. 267-276 ◽  
Author(s):  
A. Prakash ◽  
Uruturu Balakrishna ◽  
Jayanth Kumar Thenepalle

An assignment problem (AP) usually deals with how a set of persons/tasks can be assigned to a set of tasks/persons on a one-to-one basis in an optimal manner. It has been observed that balancing among the persons and jobs in several real-world situations is very hard, thus such scenarios can be seen as unbalanced assignment models (UAP) being a lack of workforce. The solution techniques presented in the literature for solving UAP’s depend on the assumption to allocate some of the tasks to fictitious persons; those tasks assigned to dummy persons are ignored at the end. However, some situations in which it is inevitable to assign more tasks to a single person. This paper addresses a practical variant of UAP called k-cardinality unbalanced assignment problem (k-UAP), in which only of persons are asked to perform jobs and all the persons should perform at least one and at most jobs. The k-UAP aims to determine the optimal assignment between persons and jobs. To tackle this problem optimally, an enumerative Lexi-search algorithm (LSA) is proposed. A comparative study is carried out to measure the efficiency of the proposed algorithm. The computational results indicate that the suggested LSA is having the great capability of solving the smaller and moderate instances optimally.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fanyu Meng ◽  
Wei Shao ◽  
Yuxia Su

Simplicial depth (SD) plays an important role in discriminant analysis, hypothesis testing, machine learning, and engineering computations. However, the computation of simplicial depth is hugely challenging because the exact algorithm is an NP problem with dimension d and sample size n as input arguments. The approximate algorithm for simplicial depth computation has extremely low efficiency, especially in high-dimensional cases. In this study, we design an importance sampling algorithm for the computation of simplicial depth. As an advanced Monte Carlo method, the proposed algorithm outperforms other approximate and exact algorithms in accuracy and efficiency, as shown by simulated and real data experiments. Furthermore, we illustrate the robustness of simplicial depth in regression analysis through a concrete physical data experiment.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mohammed A. Noman ◽  
Moath Alatefi ◽  
Abdulrahman M. Al-Ahmari ◽  
Tamer Ali

Recently, several heuristics have been interested in scheduling problems, especially those that are difficult to solve via traditional methods, and these are called NP-hard problems. As a result, many methods have been proposed to solve the difficult scheduling problems; among those, effective methods are the tabu search algorithm (TS), which is characterized by its high ability to adapt to problems of the large size scale and ease of implementation and gives solution closest to the optimum, but even though those difficult problems are common in many industries, there are only a few numbers of previous studies interested in the scheduling of jobs on unrelated parallel machines. In this paper, a developed TS algorithm based on lower bound (LB) and exact algorithm (EA) solutions is proposed with the objective of minimizing the total completion time (makespan) of jobs on nonidentical parallel machines. The given solution via EA was suggested to enhance and assess the solution obtained from TS. Moreover, the LB algorithm was developed to evaluate the quality of the solution that is supposed to be obtained by the developed TS algorithm and, in addition, to reduce the period for searching for the optimal solution. Two numerical examples from previous studies from the literature have been solved using the developed TS algorithm. Findings show that the developed TS algorithm proved its superiority and speed in giving it the best solution compared to those solutions previously obtained from the literature.


2021 ◽  
Author(s):  
Vincent Conitzer ◽  
Christian Kroer ◽  
Eric Sodomka ◽  
Nicolas E. Stier-Moses

Budgets play a significant role in ad markets that implement sequential auctions such as those hosted by internet companies. In “Multiplicative Pacing Equilibria in Auction Markets,” the authors look at pacing in an ad marketplace using the lens of game theory. The goal is understanding how bids must be shaded to maximize advertiser welfare, at equilibrium. Motivated by the real-world auction mechanism, they construct a game where advertisers in the auctions choose a multiplicative factor not larger than 1 to possibly reduce their bids and best respond to the other advertisers. The article studies the theoretical properties of the game such as existence and uniqueness of equilibria, offers an exact algorithm to compute them, connects the game to well-known abstractions such as Fisher markets, and performs a computational study with real-world-inspired instances. The main insights are that the solutions to the studied game can be used to improve the outcomes achieved by a closer-to-reality dynamic pacing algorithm and that buyers do not have an incentive to misreport bids or budgets when there are enough participants in the auction.


Author(s):  
Pengfei Sun ◽  
Xue-Yang Zhu ◽  
Ya Gao

With the rapid development of smart mobile devices, mobile applications are becoming more and more popular. Since mobile devices usually have constrained computing capacity, computation offloading to mobile edge computing (MEC) to achieve a lower latency is a promising paradigm. In this paper, we focus on the optimal offloading problem for streaming applications in MEC. We present solutions to find offloading policies of streaming applications to achieve an optimal latency. Streaming applications are modeled with synchronous data flow graphs. Two architecture assumptions are considered — with sufficient processors on both the local device and the MEC server, and with a limited number of processors on both sides. The problem is generally NP-complete. We present an exact algorithm and a heuristic algorithm for the former architecture assumption and a heuristic method for the latter. We carry out our experiments on a practical application and thousands of synthetic graphs to comprehensively evaluate our methods. The experimental results show that our methods are effective and computationally efficient.


Sign in / Sign up

Export Citation Format

Share Document