rate maximization
Recently Published Documents


TOTAL DOCUMENTS

704
(FIVE YEARS 202)

H-INDEX

33
(FIVE YEARS 8)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
Hongxia Zheng ◽  
Chiya Zhang ◽  
Yatao Yang ◽  
Xingquan Li ◽  
Chunlong He

We maximize the transmit rate of device-to-device (D2D) in a reconfigurable intelligent surface (RIS) assisted D2D communication system by satisfying the unit-modulus constraints of reflectin elements, the transmit power limit of base station (BS) and the transmitter in a D2D pair. Since it is a non-convex optimization problem, the block coordinate descent (BCD) technique is adopted to decouple this problem into three subproblems. Then, the non-convex subproblems are approximated into convex problems by using successive convex approximation (SCA) and penalty convex-concave procedure (CCP) techniques. Finally, the optimal solution of original problem is obtained by iteratively optimizing the subproblems. Simulation results reveal the validity of the algorithm that we proposed to solve the optimization problem and illustrate the effectiveness of RIS to improve the transmit rate of the D2D pair even with hardware impairments.


2021 ◽  
Author(s):  
Xue Jianbin ◽  
Li Junpeng ◽  
Hu Qingchun

Abstract In this paper, in order to improve the performance of 5G wireless communication system and save power consumption to achieve the optimal power distribution and maximize the total user rate in a multi-user cluster of non-orthogonal multiple access (NOMA) system downlink. a SWIPT-NOMA system assisted by dynamic unmanned aerial vehicle (UAV) relay is constructed. The UAV relay dynamic programming under two-hop communication was firstly studied, and the global optimal power allocation strategy for downlink users of SWIPT-NOMA system is found. Finally, the optimal relay selection algorithm was used to maximize the total user rate, which was verified by Monto Carlo simulation. The simulation results show that the performance of the proposed system model is better than that of the traditional FDMA system scheme in terms of outage probability, energy consumption and total user rate under different distribution scenarios for the multi-user cluster deployed with dynamic UAV relay system.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
João Praia ◽  
João Pedro Pavia ◽  
Nuno Souto ◽  
Marco Ribeiro

Terahertz (THz) band communications are considered a crucial technology to support future applications, such as ultra-high bit rate wireless local area networks, in the next generation of wireless communication systems. In this work, we consider an ultra-massive multiple-input multiple-output (UM-MIMO) THz communication system operating in a typical indoor scenario where the direct link between the transmitter and receiver is obstructed due to surrounding obstacles. To help establish communication, we assume the aid of a nearby reconfigurable intelligent surface (RIS) whose phase shifts can be adjusted. To configure the individual phase shifts of the RIS elements, we formulate the problem as a constrained achievable rate maximization. Due to the typical large dimensions of this optimization problem, we apply the accelerated proximal gradient (APG) method, which results in a low complexity algorithm that copes with the non-convex phase shift constraint through simple element-wise normalization. Our numerical results demonstrate the effectiveness of the proposed algorithm even when considering realistic discrete phase shifts’ quantization and imperfect channel knowledge. Furthermore, comparison against existing alternatives reveals improvements between 30% and 120% in terms of range, for a reference rate of 100 Gbps when using the proposed approach with only 81 RIS elements.


2021 ◽  
Author(s):  
Tu Nguyen ◽  
Diep Nguyen ◽  
Marco Di Renzo ◽  
Rui Zhang

Reconfigurable surfaces (RS) have recently emerged as an enabler for smart radio environments where they are used to actively tailor/control the radio propagation (e.g., to support users under adverse channel conditions). If multiple RSs are deployed (e.g., coated on various buildings) to support different groups of users, it is critical to jointly optimize the phase-shifts of all RSs to mitigate their interference as well as to leverage the secondary reflections amongst them. Motivated by the above, this paper considers the uplink transmissions of multiple users that are grouped and supported by multiple RSs to communicate with a multi-antenna base station (BS). We first formulate two optimization problems: the weighted sum-rate maximization and the minimum achievable rate (from all users) maximization. Unlike existing works that considered single user or single RS or multiple RSs without inter-RS reflections, the considered problems require one to optimize the phase-shifts of all RSs' elements and all beamformers at the multi-antenna BS. The two problems turn out to be non-convex and thus are difficult to be solved in general. Moreover, the inter-RS reflections give rise to the coupling of the phase-shifts amongst RSs, making the optimization problems even more challenging to solve. To tackle them, we design alternating optimization algorithms that provably converge to locally optimal solutions. Simulation results reveal that by properly managing interference and leveraging the secondary reflections amongst RSs, there is a great benefit of deploying more RSs to support different groups of users and so as to achieve a higher rate per user. This gain is even more significant with a larger number of elements per RS. In contrast, without properly managing the secondary reflections, increasing the number of RSs can adversely impact the network throughput, especially for higher transmit power.<br>


2021 ◽  
Author(s):  
Tu Nguyen ◽  
Diep Nguyen ◽  
Marco Di Renzo ◽  
Rui Zhang

Reconfigurable surfaces (RS) have recently emerged as an enabler for smart radio environments where they are used to actively tailor/control the radio propagation (e.g., to support users under adverse channel conditions). If multiple RSs are deployed (e.g., coated on various buildings) to support different groups of users, it is critical to jointly optimize the phase-shifts of all RSs to mitigate their interference as well as to leverage the secondary reflections amongst them. Motivated by the above, this paper considers the uplink transmissions of multiple users that are grouped and supported by multiple RSs to communicate with a multi-antenna base station (BS). We first formulate two optimization problems: the weighted sum-rate maximization and the minimum achievable rate (from all users) maximization. Unlike existing works that considered single user or single RS or multiple RSs without inter-RS reflections, the considered problems require one to optimize the phase-shifts of all RSs' elements and all beamformers at the multi-antenna BS. The two problems turn out to be non-convex and thus are difficult to be solved in general. Moreover, the inter-RS reflections give rise to the coupling of the phase-shifts amongst RSs, making the optimization problems even more challenging to solve. To tackle them, we design alternating optimization algorithms that provably converge to locally optimal solutions. Simulation results reveal that by properly managing interference and leveraging the secondary reflections amongst RSs, there is a great benefit of deploying more RSs to support different groups of users and so as to achieve a higher rate per user. This gain is even more significant with a larger number of elements per RS. In contrast, without properly managing the secondary reflections, increasing the number of RSs can adversely impact the network throughput, especially for higher transmit power.<br>


Sign in / Sign up

Export Citation Format

Share Document