achievable rate
Recently Published Documents


TOTAL DOCUMENTS

565
(FIVE YEARS 152)

H-INDEX

29
(FIVE YEARS 4)

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
João Praia ◽  
João Pedro Pavia ◽  
Nuno Souto ◽  
Marco Ribeiro

Terahertz (THz) band communications are considered a crucial technology to support future applications, such as ultra-high bit rate wireless local area networks, in the next generation of wireless communication systems. In this work, we consider an ultra-massive multiple-input multiple-output (UM-MIMO) THz communication system operating in a typical indoor scenario where the direct link between the transmitter and receiver is obstructed due to surrounding obstacles. To help establish communication, we assume the aid of a nearby reconfigurable intelligent surface (RIS) whose phase shifts can be adjusted. To configure the individual phase shifts of the RIS elements, we formulate the problem as a constrained achievable rate maximization. Due to the typical large dimensions of this optimization problem, we apply the accelerated proximal gradient (APG) method, which results in a low complexity algorithm that copes with the non-convex phase shift constraint through simple element-wise normalization. Our numerical results demonstrate the effectiveness of the proposed algorithm even when considering realistic discrete phase shifts’ quantization and imperfect channel knowledge. Furthermore, comparison against existing alternatives reveals improvements between 30% and 120% in terms of range, for a reference rate of 100 Gbps when using the proposed approach with only 81 RIS elements.


2021 ◽  
Author(s):  
Tu Nguyen ◽  
Diep Nguyen ◽  
Marco Di Renzo ◽  
Rui Zhang

Reconfigurable surfaces (RS) have recently emerged as an enabler for smart radio environments where they are used to actively tailor/control the radio propagation (e.g., to support users under adverse channel conditions). If multiple RSs are deployed (e.g., coated on various buildings) to support different groups of users, it is critical to jointly optimize the phase-shifts of all RSs to mitigate their interference as well as to leverage the secondary reflections amongst them. Motivated by the above, this paper considers the uplink transmissions of multiple users that are grouped and supported by multiple RSs to communicate with a multi-antenna base station (BS). We first formulate two optimization problems: the weighted sum-rate maximization and the minimum achievable rate (from all users) maximization. Unlike existing works that considered single user or single RS or multiple RSs without inter-RS reflections, the considered problems require one to optimize the phase-shifts of all RSs' elements and all beamformers at the multi-antenna BS. The two problems turn out to be non-convex and thus are difficult to be solved in general. Moreover, the inter-RS reflections give rise to the coupling of the phase-shifts amongst RSs, making the optimization problems even more challenging to solve. To tackle them, we design alternating optimization algorithms that provably converge to locally optimal solutions. Simulation results reveal that by properly managing interference and leveraging the secondary reflections amongst RSs, there is a great benefit of deploying more RSs to support different groups of users and so as to achieve a higher rate per user. This gain is even more significant with a larger number of elements per RS. In contrast, without properly managing the secondary reflections, increasing the number of RSs can adversely impact the network throughput, especially for higher transmit power.<br>


2021 ◽  
Author(s):  
Tu Nguyen ◽  
Diep Nguyen ◽  
Marco Di Renzo ◽  
Rui Zhang

Reconfigurable surfaces (RS) have recently emerged as an enabler for smart radio environments where they are used to actively tailor/control the radio propagation (e.g., to support users under adverse channel conditions). If multiple RSs are deployed (e.g., coated on various buildings) to support different groups of users, it is critical to jointly optimize the phase-shifts of all RSs to mitigate their interference as well as to leverage the secondary reflections amongst them. Motivated by the above, this paper considers the uplink transmissions of multiple users that are grouped and supported by multiple RSs to communicate with a multi-antenna base station (BS). We first formulate two optimization problems: the weighted sum-rate maximization and the minimum achievable rate (from all users) maximization. Unlike existing works that considered single user or single RS or multiple RSs without inter-RS reflections, the considered problems require one to optimize the phase-shifts of all RSs' elements and all beamformers at the multi-antenna BS. The two problems turn out to be non-convex and thus are difficult to be solved in general. Moreover, the inter-RS reflections give rise to the coupling of the phase-shifts amongst RSs, making the optimization problems even more challenging to solve. To tackle them, we design alternating optimization algorithms that provably converge to locally optimal solutions. Simulation results reveal that by properly managing interference and leveraging the secondary reflections amongst RSs, there is a great benefit of deploying more RSs to support different groups of users and so as to achieve a higher rate per user. This gain is even more significant with a larger number of elements per RS. In contrast, without properly managing the secondary reflections, increasing the number of RSs can adversely impact the network throughput, especially for higher transmit power.<br>


Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 510
Author(s):  
Husam Rajab ◽  
Fatma Benkhelifa ◽  
Tibor Cinkler

The new era of IoT brings the necessity of smart synergy for diverse communication and computation entities. The two extremes are, on the one hand, the 5G Ultra-Reliable Low-Latency Communications (URLLC) required for Industrial IoT (IIoT) and Vehicle Communications (V2V, V2I, V2X). While on the other hand, the Ultra-Low Power, Wide-Range, Low Bit-rate Communications, such as Sigfox, LoRa/LoRaWAN, NB-IoT, Cat-M1, etc.; used for smart metering, smart logistics, monitoring, alarms, tracking applications. This extreme variety and diversity must work in synergy, all inter-operating/inter-working with the Internet. The communication solutions must mutually cooperate, but there must be a synergy in a broader sense that includes the various communication solutions and all the processing and storage capabilities from the edge cloud to the deep-cloud. In this paper, we consider a non-orthogonal multiple access (NOMA)-based device to device (D2D) communication system coexisting with a cellular network and utilize Greedy Asynchronous Distributed Interference Avoidance Algorithm (GADIA) for dynamic frequency allocation strategy. We analyze a max–min fairness optimization problem with energy budget constraints to provide a reasonable boundary rate for the downlink to all devices and cellular users in the network for a given total transmit power. A comprehensive simulation and numerical evaluation is performed. Further, we compare the performance of maximum achievable rate and energy efficiency (EE) at a given spectral efficiency (SE) while employing NOMA and orthogonal frequency-division multiple access (OFDMA).


2021 ◽  
Author(s):  
Muhammad Salman Bashir ◽  
Mohamed-Slim Alouini

<div>Due to their flexibility and low cost deployment, unmanned aerial vehicles (UAV) will most likely act as base stations and backhaul relays in the next generation of wireless communication systems. However, these UAVs---in the untethered mode---can only operate for a finite time due to limited energy they carry in their batteries. In free-space optical communications, one solution is to transport both the data and the energy from the source to the UAV through the laser beam---a concept known as <i>simultaneous lightwave information and power transfer</i> (SLIPT). In this study, we have analyzed the SLIPT scheme for laser-powered decode-and-forward UAV relays in an optical wireless backhaul. The major goal of this study is to optimally allocate the received beam energy between the decoding circuit, the transmitting circuit and the rotor block of the relay in order to maximize a quality-of-service metric such as maximum achievable rate, outage or error probabilities. As expected, we note that the optimal power allocation depends heavily on the source-relay and relay-destination channel conditions. In the final part of this study, we have maximized the operational time of the UAV relay given that the maximum achievable rate stays above a certain threshold in order to meet a minimum quality-of-service requirement.</div>


2021 ◽  
Author(s):  
Muhammad Salman Bashir ◽  
Mohamed-Slim Alouini

<div>Due to their flexibility and low cost deployment, unmanned aerial vehicles (UAV) will most likely act as base stations and backhaul relays in the next generation of wireless communication systems. However, these UAVs---in the untethered mode---can only operate for a finite time due to limited energy they carry in their batteries. In free-space optical communications, one solution is to transport both the data and the energy from the source to the UAV through the laser beam---a concept known as <i>simultaneous lightwave information and power transfer</i> (SLIPT). In this study, we have analyzed the SLIPT scheme for laser-powered decode-and-forward UAV relays in an optical wireless backhaul. The major goal of this study is to optimally allocate the received beam energy between the decoding circuit, the transmitting circuit and the rotor block of the relay in order to maximize a quality-of-service metric such as maximum achievable rate, outage or error probabilities. As expected, we note that the optimal power allocation depends heavily on the source-relay and relay-destination channel conditions. In the final part of this study, we have maximized the operational time of the UAV relay given that the maximum achievable rate stays above a certain threshold in order to meet a minimum quality-of-service requirement.</div>


2021 ◽  
Author(s):  
Muhammad Salman Bashir ◽  
Mohamed-Slim Alouini

Due to their flexibility and low cost deployment, unmanned aerial vehicles (UAV) will most likely act as base stations and backhaul relays in the next generation of wireless communication systems. However, these UAVs---in the untethered mode---can only operate for a finite time due to limited energy they carry in their batteries. In free-space optical communications, one solution is to transport both the data and the energy from the source to the UAV through the laser beam---a concept known as simultaneous lightwave information and power transfer (SLIPT). In this study, we have analyzed the SLIPT scheme for laser-powered decode-and-forward UAV relays in an optical wireless backhaul. The major goal of this study is to optimally allocate the received beam energy between the decoding circuit, the transmitting circuit and the rotor block of the relay in order to maximize a quality-of-service metric such as maximum achievable rate, outage or error probabilities. As expected, we note that the optimal power allocation depends heavily on the source-relay and relay-destination channel conditions. In the final part of this study, we have maximized the operational time of the UAV relay given that the maximum achievable rate stays above a certain threshold in order to meet a minimum quality-of-service requirement.


2021 ◽  
Vol 27 (11) ◽  
pp. 1222-1239
Author(s):  
Mariam Haroutunian

One of the problems of information - theoretic security concerns secure communication over a wiretap channel. The aim in the general wiretap channel model is to maximize the rate of the reliable communication from the source to the legitimate receiver, while keeping the confidential information as secret as possible from the wiretapper (eavesdropper). We introduce and investigate the E - capacity - equivocation region and the E - secrecy capacity function for the wiretap channel, which are, correspondingly, the generalizations of the capacity - equivocation region and secrecy - capacity studied by Csisz&aacute;r and K&ouml;rner (1978). The E - capacity equivocation region is the closure of the set of all achievable rate - reliability and equivocation pairs, where the rate - reliability function represents the optimal dependence of rate on the error probability exponent (reliability). By analogy with the notion of E - capacity, we consider the E - secrecy capacity function that for the given E is the maximum rate at which the message can be transmitted being kept perfectly secret from the wiretapper.


Sign in / Sign up

Export Citation Format

Share Document