Minimal Surfaces in Minimally Convex Domains

Author(s):  
Antonio Alarcón ◽  
Franc Forstnerič ◽  
Francisco J. López
2018 ◽  
Vol 371 (3) ◽  
pp. 1735-1770 ◽  
Author(s):  
Antonio Alarcón ◽  
Barbara Drinovec Drnovšek ◽  
Franc Forstnerič ◽  
Francisco J. López

2018 ◽  
Vol 106 (03) ◽  
pp. 287-341 ◽  
Author(s):  
ANTONIO ALARCÓN ◽  
FRANC FORSTNERIČ

In this paper we survey recent developments in the classical theory of minimal surfaces in Euclidean spaces which have been obtained as applications of both classical and modern complex analytic methods; in particular, Oka theory, period dominating holomorphic sprays, gluing methods for holomorphic maps, and the Riemann–Hilbert boundary value problem. Emphasis is on results pertaining to the global theory of minimal surfaces, in particular, the Calabi–Yau problem, constructions of properly immersed and embedded minimal surfaces in $\mathbb{R}^{n}$ and in minimally convex domains of $\mathbb{R}^{n}$ , results on the complex Gauss map, isotopies of conformal minimal immersions, and the analysis of the homotopy type of the space of all conformal minimal immersions from a given open Riemann surface.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Marcello Carioni ◽  
Alessandra Pluda

Abstract Calibrations are a possible tool to validate the minimality of a certain candidate. They have been introduced in the context of minimal surfaces and adapted to the case of the Steiner problem in several variants. Our goal is to compare the different notions of calibrations for the Steiner problem and for planar minimal partitions that are already present in the literature. The paper is then complemented with remarks on the convexification of the problem, on nonexistence of calibrations and on calibrations in families.


2021 ◽  
Author(s):  
Antonio Alarcón ◽  
Franc Forstnerič ◽  
Francisco J. López
Keyword(s):  

2020 ◽  
Vol 7 (1) ◽  
pp. 129-140
Author(s):  
Robert Ream

AbstractIn this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical 𝒥-holomorphic curves in the weightless twistor space and branched Weyl-minimal surfaces. When (M, c, J) is conformally almost-Hermitian, there is a canonical Weyl connection. We show that for the canonical Weyl connection, branched Weyl-minimal surfaces satisfy the adjunction inequality\chi \left( {{T_f}\sum } \right) + \chi \left( {{N_f}\sum } \right) \le \pm {c_1}\left( {f*{T^{\left( {1,0} \right)}}M} \right).The ±J-holomorphic curves are automatically Weyl-minimal and satisfy the corresponding equality. These results generalize results of Eells-Salamon and Webster for minimal surfaces in Kähler 4-manifolds as well as their extension to almost-Kähler 4-manifolds by Chen-Tian, Ville, and Ma.


Author(s):  
Francisco Gonzalez-Quintial ◽  
Andres Martin-Pastor

Sign in / Sign up

Export Citation Format

Share Document