THE EXISTENCE OF SURFACE PATCHES FOR PERIODIC MINIMAL SURFACES

1990 ◽  
Vol 51 (C7) ◽  
pp. C7-265-C7-271 ◽  
Author(s):  
J. C.C. NITSCHE

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Marcello Carioni ◽  
Alessandra Pluda

Abstract Calibrations are a possible tool to validate the minimality of a certain candidate. They have been introduced in the context of minimal surfaces and adapted to the case of the Steiner problem in several variants. Our goal is to compare the different notions of calibrations for the Steiner problem and for planar minimal partitions that are already present in the literature. The paper is then complemented with remarks on the convexification of the problem, on nonexistence of calibrations and on calibrations in families.



2021 ◽  
Author(s):  
Antonio Alarcón ◽  
Franc Forstnerič ◽  
Francisco J. López
Keyword(s):  


2020 ◽  
Vol 7 (1) ◽  
pp. 129-140
Author(s):  
Robert Ream

AbstractIn this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical 𝒥-holomorphic curves in the weightless twistor space and branched Weyl-minimal surfaces. When (M, c, J) is conformally almost-Hermitian, there is a canonical Weyl connection. We show that for the canonical Weyl connection, branched Weyl-minimal surfaces satisfy the adjunction inequality\chi \left( {{T_f}\sum } \right) + \chi \left( {{N_f}\sum } \right) \le \pm {c_1}\left( {f*{T^{\left( {1,0} \right)}}M} \right).The ±J-holomorphic curves are automatically Weyl-minimal and satisfy the corresponding equality. These results generalize results of Eells-Salamon and Webster for minimal surfaces in Kähler 4-manifolds as well as their extension to almost-Kähler 4-manifolds by Chen-Tian, Ville, and Ma.



Author(s):  
Francisco Gonzalez-Quintial ◽  
Andres Martin-Pastor


1997 ◽  
Vol 119 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Takashi Maekawa ◽  
Wonjoon Cho ◽  
Nicholas M. Patrikalakis

Self-intersection of offsets of regular Be´zier surface patches due to local differential geometry and global distance function properties is investigated. The problem of computing starting points for tracing self-intersection curves of offsets is formulated in terms of a system of nonlinear polynomial equations and solved robustly by the interval projected polyhedron algorithm. Trivial solutions are excluded by evaluating the normal bounding pyramids of the surface subpatches mapped from the parameter boxes computed by the polynomial solver with a coarse tolerance. A technique to detect and trace self-intersection curve loops in the parameter domain is also discussed. The method has been successfully tested in tracing complex self-intersection curves of offsets of Be´zier surface patches. Examples illustrate the principal features and robustness characteristics of the method.



1978 ◽  
Vol 33 (3) ◽  
pp. 145-146
Author(s):  
Dao Chong Tkhi


2007 ◽  
Vol 129 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Oscar Mario Perdomo
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document