Method of Multi-objective Design of Strain Gauge Force Sensors Based on Surrogate Modeling Techniques

Author(s):  
Sergey I. Gavrilenkov ◽  
Sergey S. Gavriushin
2016 ◽  
Vol 33 (1) ◽  
pp. 184-201 ◽  
Author(s):  
Slawomir Koziel ◽  
Adrian Bekasiewicz

Purpose – Strategies for accelerated multi-objective optimization of compact microwave and RF structures are investigated, including the possibility of exploiting surrogate modeling techniques for electromagnetic (EM)-driven design speedup for such components. The paper aims to discuss these issues. Design/methodology/approach – Two algorithmic frameworks are described that are based on fast response surface approximation models, structure decomposition, and Pareto front refinement. Numerical case studies are provided demonstrating feasibility of solving real-world problems involving multi-objective optimization of miniaturized microwave passives and expensive EM-simulation models of such structures. Findings – It is possible, through appropriate combination of the surrogate modeling techniques and response correction methods, to identify the set of alternative designs representing the best possible trade-offs between conflicting design objectives in a realistic time frame corresponding to a few dozen of high-fidelity EM simulations of the respective structures. Research limitations/implications – The present study sets a direction for further studied on expedited optimization of computationally expensive simulation models for miniaturized microwave components. Originality/value – The proposed algorithmic framework proved useful for fast design of microwave structures, which is extremely challenging when using conventional methods. To the authors’ knowledge, this is one of the first attempts to surrogate-assisted multi-objective optimization of compact components at the EM-simulation level.


2018 ◽  
Vol 23 (13) ◽  
pp. 4911-4925 ◽  
Author(s):  
F. Passos ◽  
R. González-Echevarría ◽  
E. Roca ◽  
R. Castro-López ◽  
F. V. Fernández

Sign in / Sign up

Export Citation Format

Share Document