double gate
Recently Published Documents





Hakkee Jung ◽  

—The variation of subthreshold swing(SS) according to the projected range (Rp ) and standard projected deviation (σp ) was analyzed when the symmetrical junctionless double gate (JLDG) MOSFET was doped with Gaussian doping profile. For this purpose, the analytical SS model was presented. We compared with the TCAD results to turn out the validity of this model, and the SSs of this model agreed with those of TCAD. The effective conduction path and mean doping concentration affecting the SS were analyzed according to the Rp and σp . As a result, the SS increased as the Rp and σp increased simultaneously. The smaller the Rp and the larger the σp , the lower the SS. When Rp = 1.5 nm, it showed the SS below 100mV/dec without being affected by the change of σp or silicon thickness. When σp = 3nm, it was also 100mV/dec or less regardless of the change of Rp and silicon thickness. Keywords— Double gate, Junctionless, Subthreshold swing, Gaussian, Projected range, Standard projected deviation

2022 ◽  
Takayuki Gyakushi ◽  
Ikuma Amano ◽  
Atsushi Tsurumaki-Fukuchi ◽  
Masashi Arita ◽  
Yasuo Takahashi

Abstract Multidot single-electron devices (SEDs) can realize new types of computing technologies, such as reconfigurable and reservoir computing. The self-assembled metal nanodot-array film attached with multiple gates is a candidate for use in such SEDs to achieve high functionality. However, the single-electron properties of such a film have not yet been investigated in use with optimally controlled multiple gates because of structural complexity having many nanodots. In this study, Fe nanodot-array-based double-gate SEDs were fabricated and their single-electron properties modulated by the top- and bottom-gate voltages (VT and VB, respectively) were investigated. As reported in our previous study, the drain current (ID) exhibited clear oscillations against VB (i.e., Coulomb blockade oscillation) in a part of the devices, originating from a single dot among several dots. The phase of the Coulomb blockade oscillation systematically shifted with VT, indicating that the charge state of the single dot was clearly controlled by both the gate voltages despite the multidot structure and the metal multidot SED has potential for logic-gate operation. The top and bottom gates affected the electronic state of the dot unevenly owing to the geometrical effect caused by the dot shape and size of the surrounding dots.

Silicon ◽  
2022 ◽  
Chithraja Rajan ◽  
Omdarshan Paul ◽  
Dip Prakash Samajdar ◽  
Tarek Hidouri ◽  
Samia Nasr

Silicon ◽  
2022 ◽  
Soumya S. Mohanty ◽  
Sikha Mishra ◽  
Meryleen Mohapatra ◽  
Guru Prasad Mishra

2022 ◽  
Vol 1048 ◽  
pp. 147-157
Naveenbalaji Gowthaman ◽  
Viranjay Srivastava

The channel material of a gate describes the operating condition of the MOSFET. A suitable operating condition prevails in MOSFETs if the transistors are quite enough to observe and control at the nanometer regime. An efficient gate and channel material have been proposed in this work which is based on the electrical properties they exhibit at the temperature of 300K. The doping concentration for the electrons and holes is maintained to be 1Χ1019cm-3 for the entire electronic simulator. The simulation results show that using La2O3 along with Indium Nitride (InN) material for the designing of Double-Gate (DG) MOSFETs provides better controllability over the transistor at a channel length of 50nm. This proposed DG-MOSFET is more compliant than the conventional coplanar MOSFETs based on Silicon.

2022 ◽  
Vol 145 ◽  
pp. 107531
Wenjiang Tan ◽  
Jun Ma ◽  
Jinhai Si ◽  
Zhenqiang Huang ◽  
Xun Hou

Sign in / Sign up

Export Citation Format

Share Document