simulation models
Recently Published Documents


TOTAL DOCUMENTS

6539
(FIVE YEARS 1644)

H-INDEX

90
(FIVE YEARS 9)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Patrick Andersen ◽  
Anja Mizdrak ◽  
Nick Wilson ◽  
Anna Davies ◽  
Laxman Bablani ◽  
...  

Abstract Background Simulation models can be used to quantify the projected health impact of interventions. Quantifying heterogeneity in these impacts, for example by socioeconomic status, is important to understand impacts on health inequalities. We aim to disaggregate one type of Markov macro-simulation model, the proportional multistate lifetable, ensuring that under business-as-usual (BAU) the sum of deaths across disaggregated strata in each time step returns the same as the initial non-disaggregated model. We then demonstrate the application by deprivation quintiles for New Zealand (NZ), for: hypothetical interventions (50% lower all-cause mortality, 50% lower coronary heart disease mortality) and a dietary intervention to substitute 59% of sodium with potassium chloride in the food supply. Methods We developed a disaggregation algorithm that iteratively rescales mortality, incidence and case-fatality rates by time-step of the model to ensure correct total population counts were retained at each step. To demonstrate the algorithm on deprivation quintiles in NZ, we used the following inputs: overall (non-disaggregated) all-cause mortality & morbidity rates, coronary heart disease incidence & case fatality rates; stroke incidence & case fatality rates. We also obtained rate ratios by deprivation for these same measures. Given all-cause and cause-specific mortality rates by deprivation quintile, we derived values for the incidence, case fatality and mortality rates for each quintile, ensuring rate ratios across quintiles and the total population mortality and morbidity rates were returned when averaged across groups. The three interventions were then run on top of these scaled BAU scenarios. Results The algorithm exactly disaggregated populations by strata in BAU. The intervention scenario life years and health adjusted life years (HALYs) gained differed slightly when summed over the deprivation quintile compared to the aggregated model, due to the stratified model (appropriately) allowing for differential background mortality rates by strata. Modest differences in health gains (HALYs) resulted from rescaling of sub-population mortality and incidence rates to ensure consistency with the aggregate population. Conclusion Policy makers ideally need to know the effect of population interventions estimated both overall, and by socioeconomic and other strata. We demonstrate a method and provide code to do this routinely within proportional multistate lifetable simulation models and similar Markov models.


2022 ◽  
Author(s):  
Hanna ten Brink ◽  
Thomas Ray Haaland ◽  
Oystein Hjorthol Opedal

The common occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials, and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary numerical and evolutionary simulation models of within- and among-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with density dependence, life-history traits, and priority effects due to competitive differences among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when "false starts" to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that two distinct germination strategies can evolve and coexist through negative frequency-dependent selection. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.


2022 ◽  
Author(s):  
Sahila Beegum ◽  
P J Jainet ◽  
Dawn Emil ◽  
K P Sudheer ◽  
Saurav Das

Abstract Soil pore water pressure analysis is crucial for understanding landslide initiation and prediction. However, field-scale transient pore water pressure measurements are complex. This study investigates the integrated application of simulation models (HYDRUS-2D/3D and GeoStudio–Slope/W) to analyze pore water pressure-induced landslides. The proposed methodology is illustrated and validated using a case study (landslide in India, 2018). Model simulated pore water pressure was correlated with the stability of hillslope, and simulation results were found to be co-aligned with the actual landslide that occurred in 2018. Simulations were carried out for natural and modified hill slope geometry in the study area. The volume of water in the hill slope, temporal and spatial evolution of pore water pressure, and factor of safety were analysed. Results indicated higher stability in natural hillslope (factor of safety of 1.243) compared to modified hill slope (factor of safety of 0.946) despite a higher pore water pressure in the natural hillslope. The study demonstrates the integrated applicability of the physics-based models in analyzing the stability of hill slopes under varying pore water pressure and hill slope geometry and its accuracy in predicting future landslides.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 541
Author(s):  
Alessandra Perna ◽  
Mariagiovanna Minutillo ◽  
Simona Di Micco ◽  
Elio Jannelli

In this study, the authors present a techno-economic assessment of on-site hydrogen refuelling stations (450 kg/day of H2) based on different hydrogen sources and production technologies. Green ammonia, biogas, and water have been considered as hydrogen sources while cracking, autothermal reforming, and electrolysis have been selected as the hydrogen production technologies. The electric energy requirements of the hydrogen refuelling stations (HRSs) are internally satisfied using the fuel cell technology as power units for ammonia and biogas-based configurations and the PV grid-connected power plant for the water-based one. The hydrogen purification, where necessary, is performed by means of a Palladium-based membrane unit. Finally, the same hydrogen compression, storage, and distribution section are considered for all configurations. The sizing and the energy analysis of the proposed configurations have been carried out by simulation models adequately developed. Moreover, the economic feasibility has been performed by applying the life cycle cost analysis. The ammonia-based configurations are the best solutions in terms of hydrogen production energy efficiency (>71%, LHV) as well as from the economic point of view, showing a levelized cost of hydrogen (LCOH) in the range of 6.28 EUR/kg to 6.89 EUR/kg, a profitability index greater than 3.5, and a Discounted Pay Back Time less than five years.


2022 ◽  
Author(s):  
Constantina Chiriac ◽  
◽  
Valeriu Stelian Niţoi ◽  
Marius Gîrtan ◽  
◽  
...  

The paper aims to be a model of analysis on passenger transport management for Bucharest and the metropolitan area, in order to stimulate the economic development of the city by supporting economic activities of local interest, by increasing the mobility of the transport system, economic activities that benefit local communities and that do not adversely affect people's health or the environment. The analysis presented proposes the use of geospatial information systems for urban traffic management and the construction of traffic simulation models.


MAUSAM ◽  
2022 ◽  
Vol 53 (1) ◽  
pp. 45-52
Author(s):  
R. K. MALL ◽  
M. K. SRIVASTAVA

This study reports the role of field experimentation and system simulation in better quantifying the productivity of wheat crop, and examine how knowledge on potential productivity can improve the efficiency of the production system. When knowledge from field experimentation is utilised into crop weather simulation models, gap between actual, attainable and potential yield for a given environment can be determined and opportunities for yield improvement can be assessed. Results show that while actual district average yields show increasing trend, decreasing trend is noticed in potential and attainable yield. While the total and management yield gap is decreasing over time, research yield gap does not show any trend, it is nearly stagnant from early eighties to late nineties. The study reported here presents the advantage of simulation models to determine the yield gap against a variable annual yield potential for a agro-climatic region.


2022 ◽  
Author(s):  
Maxime Dahirel ◽  
Chloe Guicharnaud ◽  
Elodie Vercken

Ecological and evolutionary dynamics of range expansions are shaped by both dispersal and population growth. Accordingly, density-dependence in either dispersal or growth can determine whether expansions are pulled or pushed, i.e. whether expansion velocities and genetic diversity are mainly driven by recent, low-density edge populations, or by older populations closer to the core. Despite this and despite abundant evidence of dispersal evolution during expansions, the impact of density-dependent dispersal and its evolution on expansion dynamics remains understudied. Here, we used simulation models to examine the influence of individual trait variation in both dispersal capacity and dispersal density-dependence on expansions, and how it impacts the position of expansions on the pulled-pushed continuum. First, we found that knowing about the evolution of density-dependent dispersal at the range edge can greatly improve our ability to predict whether an expansion is (more) pushed or (more) pulled. Second, we found that both dispersal costs and the sources of variation in dispersal (genetic or non-genetic, in dispersal capacity versus in density-dependence) greatly influence how expansion dynamics evolve. Among other scenarios, pushed expansions tended to become more pulled with time only when density-dependence was highly heritable, dispersal costs were low and dispersal capacity could not evolve. When, on the other hand, variation in density-dependence had no genetic basis, but dispersal capacity could evolve, then pushed expansions tended to become more pushed with time, and pulled expansions more pulled. More generally, our results show that trying to predict expansion velocities and dynamics using trait information from non-expanding regions only may be problematic, that both dispersal variation and its sources play a key role in determining whether an expansion is and stays pushed, and that environmental context (here dispersal costs) cannot be neglected. Those simulations suggest new avenues of research to explore, both in terms of theoretical studies and regarding ways to empirically study pushed vs. pulled range expansions.


MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 329-336
Author(s):  
S. D. ATTRI ◽  
ANUBHA KAUSHIK ◽  
L. S. RATHORE ◽  
B. LAL

Water is one of the most limiting resources for agricultural production. Due to uneven distribution of rainfall, supplemental irrigation is often required to produce sustainable yield level. Timing and frequency of irrigation is one of the most important tactical decisions, which a farmer has to make to maximize profit from limited water availability. Computer based dynamic simulation models have the capability to assess management options under different environments to help in decision making. In this study, CRESS-Wheat Model  V-3.5 has been utilized to quantify the optimum utilization of limited water for popular wheat genotypes of NW India for operational use in Agrometeorological Advisory services with routinely measured weather parameters.


2022 ◽  
pp. 1-29
Author(s):  
Sina Fazelpour ◽  
Daniel Steel

Abstract Previous simulation models have found positive effects of cognitive diversity on group performance, but have not explored effects of diversity in demographics (e.g., gender, ethnicity). In this paper, we present an agent-based model that captures two empirically supported hypotheses about how demographic diversity can improve group performance. The results of our simulations suggest that, even when social identities are not associated with distinctive task-related cognitive resources, demographic diversity can, in certain circumstances, benefit collective performance by counteracting two types of conformity that can arise in homogeneous groups: those relating to group-based trust and those connected to normative expectations towards in-groups.


Sign in / Sign up

Export Citation Format

Share Document