Software Fault Prediction Using Data Mining Techniques on Software Metrics

2021 ◽  
pp. 304-313
Author(s):  
Rakesh Kumar ◽  
Amrita Chaturvedi
2012 ◽  
pp. 371-387 ◽  
Author(s):  
Cagatay Catal ◽  
Soumya Banerjee

Artificial Immune Systems, a biologically inspired computing paradigm such as Artificial Neural Networks, Genetic Algorithms, and Swarm Intelligence, embody the principles and advantages of vertebrate immune systems. It has been applied to solve several complex problems in different areas such as data mining, computer security, robotics, aircraft control, scheduling, optimization, and pattern recognition. There is an increasing interest in the use of this paradigm and they are widely used in conjunction with other methods such as Artificial Neural Networks, Swarm Intelligence and Fuzzy Logic. In this chapter, we demonstrate the procedure for applying this paradigm and bio-inspired algorithm for developing software fault prediction models. The fault prediction unit is to identify the modules, which are likely to contain the faults at the next release in a large software system. Software metrics and fault data belonging to a previous software version are used to build the model. Fault-prone modules of the next release are predicted by using this model and current software metrics. From machine learning perspective, this type of modeling approach is called supervised learning. A sample fault dataset is used to show the elaborated approach of working of Artificial Immune Recognition Systems (AIRS).


Author(s):  
Golnoush Abaei ◽  
Ali Selamat

Quality assurance tasks such as testing, verification and validation, fault tolerance, and fault prediction play a major role in software engineering activities. Fault prediction approaches are used when a software company needs to deliver a finished product while it has limited time and budget for testing it. In such cases, identifying and testing parts of the system that are more defect prone is reasonable. In fact, prediction models are mainly used for improving software quality and exploiting available resources. Software fault prediction is studied in this chapter based on different criteria that matters in this research field. Usually, there are certain issues that need to be taken care of such as different machine-learning techniques, artificial intelligence classifiers, variety of software metrics, distinctive performance evaluation metrics, and some statistical analysis. In this chapter, the authors present a roadmap for those researchers who are interested in working in this area. They illustrate problems along with objectives related to each mentioned criterion, which could assist researchers to build the finest software fault prediction model.


Author(s):  
Cagatay Catal ◽  
Soumya Banerjee

Artificial Immune Systems, a biologically inspired computing paradigm such as Artificial Neural Networks, Genetic Algorithms, and Swarm Intelligence, embody the principles and advantages of vertebrate immune systems. It has been applied to solve several complex problems in different areas such as data mining, computer security, robotics, aircraft control, scheduling, optimization, and pattern recognition. There is an increasing interest in the use of this paradigm and they are widely used in conjunction with other methods such as Artificial Neural Networks, Swarm Intelligence and Fuzzy Logic. In this chapter, we demonstrate the procedure for applying this paradigm and bio-inspired algorithm for developing software fault prediction models. The fault prediction unit is to identify the modules, which are likely to contain the faults at the next release in a large software system. Software metrics and fault data belonging to a previous software version are used to build the model. Fault-prone modules of the next release are predicted by using this model and current software metrics. From machine learning perspective, this type of modeling approach is called supervised learning. A sample fault dataset is used to show the elaborated approach of working of Artificial Immune Recognition Systems (AIRS).


Sign in / Sign up

Export Citation Format

Share Document