feature selection
Recently Published Documents





2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Byron Marshall ◽  
Michael Curry ◽  
Robert E. Crossler ◽  
John Correia

Survey items developed in behavioral Information Security (InfoSec) research should be practically useful in identifying individuals who are likely to create risk by failing to comply with InfoSec guidance. The literature shows that attitudes, beliefs, and perceptions drive compliance behavior and has influenced the creation of a multitude of training programs focused on improving ones’ InfoSec behaviors. While automated controls and directly observable technical indicators are generally preferred by InfoSec practitioners, difficult-to-monitor user actions can still compromise the effectiveness of automatic controls. For example, despite prohibition, doubtful or skeptical employees often increase organizational risk by using the same password to authenticate corporate and external services. Analysis of network traffic or device configurations is unlikely to provide evidence of these vulnerabilities but responses to well-designed surveys might. Guided by the relatively new IPAM model, this study administered 96 survey items from the Behavioral InfoSec literature, across three separate points in time, to 217 respondents. Using systematic feature selection techniques, manageable subsets of 29, 20, and 15 items were identified and tested as predictors of non-compliance with security policy. The feature selection process validates IPAM's innovation in using nuanced self-efficacy and planning items across multiple time frames. Prediction models were trained using several ML algorithms. Practically useful levels of prediction accuracy were achieved with, for example, ensemble tree models identifying 69% of the riskiest individuals within the top 25% of the sample. The findings indicate the usefulness of psychometric items from the behavioral InfoSec in guiding training programs and other cybersecurity control activities and demonstrate that they are promising as additional inputs to AI models that monitor networks for security events.

2022 ◽  
Vol 191 ◽  
pp. 116235
Essam H. Houssein ◽  
Eman Saber ◽  
Abdelmgeid A. Ali ◽  
Yaser M. Wazery

2022 ◽  
Vol 9 (3) ◽  
pp. 570-572
Yadi Wang ◽  
Zefeng Zhang ◽  
Yinghao Lin

Riyadh Rahef Nuiaa ◽  
Selvakumar Manickam ◽  
Ali Hakem Alsaeedi ◽  
Esraa Saleh Alomari

Cyberattacks have grown steadily over the last few years. The distributed reflection denial of service (DRDoS) attack has been rising, a new variant of distributed denial of service (DDoS) attack. DRDoS attacks are more difficult to mitigate due to the dynamics and the attack strategy of this type of attack. The number of features influences the performance of the intrusion detection system by investigating the behavior of traffic. Therefore, the feature selection model improves the accuracy of the detection mechanism also reduces the time of detection by reducing the number of features. The proposed model aims to detect DRDoS attacks based on the feature selection model, and this model is called a proactive feature selection model proactive feature selection (PFS). This model uses a nature-inspired optimization algorithm for the feature subset selection. Three machine learning algorithms, i.e., k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were evaluated as the potential classifier for evaluating the selected features. We have used the CICDDoS2019 dataset for evaluation purposes. The performance of each classifier is compared to previous models. The results indicate that the suggested model works better than the current approaches providing a higher detection rate (DR), a low false-positive rate (FPR), <span>and increased accuracy detection (DA).</span> The PFS model shows better accuracy to detect DRDoS attacks with 89.59%.

2022 ◽  
Vol 16 (4) ◽  
pp. 1-24
Kui Yu ◽  
Yajing Yang ◽  
Wei Ding

Causal feature selection aims at learning the Markov blanket (MB) of a class variable for feature selection. The MB of a class variable implies the local causal structure among the class variable and its MB and all other features are probabilistically independent of the class variable conditioning on its MB, this enables causal feature selection to identify potential causal features for feature selection for building robust and physically meaningful prediction models. Missing data, ubiquitous in many real-world applications, remain an open research problem in causal feature selection due to its technical complexity. In this article, we discuss a novel multiple imputation MB (MimMB) framework for causal feature selection with missing data. MimMB integrates Data Imputation with MB Learning in a unified framework to enable the two key components to engage with each other. MB Learning enables Data Imputation in a potentially causal feature space for achieving accurate data imputation, while accurate Data Imputation helps MB Learning identify a reliable MB of the class variable in turn. Then, we further design an enhanced kNN estimator for imputing missing values and instantiate the MimMB. In our comprehensively experimental evaluation, our new approach can effectively learn the MB of a given variable in a Bayesian network and outperforms other rival algorithms using synthetic and real-world datasets.

2022 ◽  
Vol 191 ◽  
pp. 116302
Akshata K. Naik ◽  
Venkatanareshbabu Kuppili

Sign in / Sign up

Export Citation Format

Share Document