Topic Modeling of Marketing Scientific Papers: An Experimental Survey

Author(s):  
Malek Chebil ◽  
Rim Jallouli ◽  
Mohamed Anis Bach Tobji ◽  
Chiheb Eddine Ben Ncir
2021 ◽  
Vol 10 (04) ◽  
pp. 541-548
Author(s):  
Denis Luiz Marcello Owa

AI ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 578-599
Author(s):  
Fuad Alattar ◽  
Khaled Shaalan

Comparing two sets of documents to identify new topics is useful in many applications, like discovering trending topics from sets of scientific papers, emerging topic detection in microblogs, and interpreting sentiment variations in Twitter. In this paper, the main topic-modeling-based approaches to address this task are examined to identify limitations and necessary enhancements. To overcome these limitations, we introduce two separate frameworks to discover emerging topics through a filtered latent Dirichlet allocation (filtered-LDA) model. The model acts as a filter that identifies old topics from a timestamped set of documents, removes all documents that focus on old topics, and keeps documents that discuss new topics. Filtered-LDA also genuinely reduces the chance of using keywords from old topics to represent emerging topics. The final stage of the filter uses multiple topic visualization formats to improve human interpretability of the filtered topics, and it presents the most-representative document for each topic.


Author(s):  
Yiming Wang ◽  
Ximing Li ◽  
Jihong Ouyang

Neural topic modeling provides a flexible, efficient, and powerful way to extract topic representations from text documents. Unfortunately, most existing models cannot handle the text data with network links, such as web pages with hyperlinks and scientific papers with citations. To resolve this kind of data, we develop a novel neural topic model , namely Layer-Assisted Neural Topic Model (LANTM), which can be interpreted from the perspective of variational auto-encoders. Our major motivation is to enhance the topic representation encoding by not only using text contents, but also the assisted network links. Specifically, LANTM encodes the texts and network links to the topic representations by an augmented network with graph convolutional modules, and decodes them by maximizing the likelihood of the generative process. The neural variational inference is adopted for efficient inference. Experimental results validate that LANTM significantly outperforms the existing models on topic quality, text classification and link prediction..


2021 ◽  
Author(s):  
Jia Zhang ◽  
Junhao Shen ◽  
Beichen Hu ◽  
Rahul Ramachandran ◽  
Tsengdar J. Lee ◽  
...  

2021 ◽  
Author(s):  
Ajda Pretnar ◽  
Tomaž Curk

Literature reviews are essential for understanding a specific domain as they map the main topics of current re-search. Our aim was to provide a framework for retrieving articles from online databases and analyzing them in a single script. We provide the analytical pipeline as open-source (https://github.com/tourism4-0/BibMine). The main research focus was on analyzing 318 abstracts from scientific papers on tourism and innovation, which we report in Zach et al. (2019). We used LDA topic modeling to uncover ten main topics, which we analyzed using pyLDAvis visualization. We used saliency and relevance scores to determine the main words that de-scribe a topic. The uncovered topics range from climate change and land use to smart destinations, travel expe-riences, and ICT. We performed similar analyses for the term "stakeholders," where we also observed the main verbs related to the query. Since verbs best define an activity, we used them to determine how stakeholders are involved in tourism development. Finally, we analyzed papers with the keyword "technology," where energy efficiency, VR, web technology, and augmented tourist experiences were the main topics.


2009 ◽  
Author(s):  
George Howard Darwin
Keyword(s):  

BDJ ◽  
1996 ◽  
Vol 181 (6) ◽  
pp. 226-227
Author(s):  
D McGowan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document