Sixty Years of Bernoulli Convolutions

Author(s):  
Yuval Peres ◽  
Wilhelm Schlag ◽  
Boris Solomyak
1996 ◽  
Vol 82 (1-2) ◽  
pp. 397-420 ◽  
Author(s):  
François Ledrappier ◽  
Anna Porzio

2010 ◽  
Vol 46 (3) ◽  
pp. 888-893 ◽  
Author(s):  
Michael Björklund ◽  
Daniel Schnellmann

2015 ◽  
Vol 269 (5) ◽  
pp. 1571-1590 ◽  
Author(s):  
Li-Xiang An ◽  
Xing-Gang He ◽  
Hai-Xiong Li

2018 ◽  
Vol 2020 (19) ◽  
pp. 6569-6595 ◽  
Author(s):  
Shigeki Akiyama ◽  
De-Jun Feng ◽  
Tom Kempton ◽  
Tomas Persson

Abstract We give an expression for the Garsia entropy of Bernoulli convolutions in terms of products of matrices. This gives an explicit rate of convergence of the Garsia entropy and shows that one can calculate the Hausdorff dimension of the Bernoulli convolution $\nu _{\beta }$ to arbitrary given accuracy whenever $\beta $ is algebraic. In particular, if the Garsia entropy $H(\beta )$ is not equal to $\log (\beta )$ then we have a finite time algorithm to determine whether or not $\operatorname{dim_H} (\nu _{\beta })=1$.


2002 ◽  
Vol 87 (1) ◽  
pp. 337-367 ◽  
Author(s):  
Elon Lindenstrauss ◽  
Yuval Peres ◽  
Wilhelm Schlag

1994 ◽  
Vol 8 (4) ◽  
pp. 449-462 ◽  
Author(s):  
Erol A. Peköz ◽  
Sheldon M. Ross

Let X1,…, Xn, be indicator random variables, and set We present a method for estimating the distribution of W in settings where W has an approximately Poisson distribution. Our method is shown to yield estimates significantly better than straight Poisson estimates when applied to Bernoulli convolutions, urn models, the circular k of n: F system, and a matching problem. Error bounds are given.


Sign in / Sign up

Export Citation Format

Share Document