Dynamical Localization for Random Schrödinger Operators and an Application to the Almost Mathieu Operator

Author(s):  
François Germinet
Author(s):  
Alberto Takase

AbstractWe consider separable 2D discrete Schrödinger operators generated by 1D almost Mathieu operators. For fixed Diophantine frequencies, we prove that for sufficiently small couplings the spectrum must be an interval. This complements a result by J. Bourgain establishing that for fixed couplings the spectrum has gaps for some (positive measure) Diophantine frequencies. Our result generalizes to separable multidimensional discrete Schrödinger operators generated by 1D quasiperiodic operators whose potential is analytic and whose frequency is Diophantine. The proof is based on the study of the thickness of the spectrum of the almost Mathieu operator and utilizes the Newhouse Gap Lemma on sums of Cantor sets.


2007 ◽  
Vol 19 (09) ◽  
pp. 923-939 ◽  
Author(s):  
PAVEL EXNER ◽  
MARIO HELM ◽  
PETER STOLLMANN

We prove spectral and dynamical localization on a cubic-lattice quantum graph with a random potential. We use multiscale analysis and show how to obtain the necessary estimates in analogy to the well-studied case of random Schrödinger operators.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Luca Fresta

AbstractWe study discrete random Schrödinger operators via the supersymmetric formalism. We develop a cluster expansion that converges at both strong and weak disorder. We prove the exponential decay of the disorder-averaged Green’s function and the smoothness of the local density of states either at weak disorder and at energies in proximity of the unperturbed spectrum or at strong disorder and at any energy. As an application, we establish Lifshitz-tail-type estimates for the local density of states and thus localization at weak disorder.


1993 ◽  
Vol 157 (1) ◽  
pp. 23-50 ◽  
Author(s):  
Y. A. Gordon ◽  
V. Jakšić ◽  
S. Molčanov ◽  
B. Simon

Sign in / Sign up

Export Citation Format

Share Document