Mathematical Physics Analysis and Geometry
Latest Publications


TOTAL DOCUMENTS

433
(FIVE YEARS 115)

H-INDEX

17
(FIVE YEARS 3)

Published By Springer-Verlag

1572-9656, 1385-0172

2022 ◽  
Vol 25 (1) ◽  
Author(s):  
Joscha Henheik

AbstractWe investigate the BCS critical temperature $$T_c$$ T c in the high-density limit and derive an asymptotic formula, which strongly depends on the behavior of the interaction potential V on the Fermi-surface. Our results include a rigorous confirmation for the behavior of $$T_c$$ T c at high densities proposed by Langmann et al. (Phys Rev Lett 122:157001, 2019) and identify precise conditions under which superconducting domes arise in BCS theory.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Jung-Chao Ban ◽  
Chih-Hung Chang ◽  
Yu-Liang Wu ◽  
Yu-Ying Wu

2021 ◽  
Vol 24 (4) ◽  
Author(s):  
Misha Schmalian ◽  
Yuri B. Suris ◽  
Yuriy Tumarkin

AbstractWe find a novel one-parameter family of integrable quadratic Cremona maps of the plane preserving a pencil of curves of degree 6 and of genus 1. They turn out to serve as Kahan-type discretizations of a novel family of quadratic vector fields possessing a polynomial integral of degree 6 whose level curves are of genus 1, as well. These vector fields are non-homogeneous generalizations of reduced Nahm systems for magnetic monopoles with icosahedral symmetry, introduced by Hitchin, Manton and Murray. The straightforward Kahan discretization of these novel non-homogeneous systems is non-integrable. However, this drawback is repaired by introducing adjustments of order $$O(\epsilon ^2)$$ O ( ϵ 2 ) in the coefficients of the discretization, where $$\epsilon $$ ϵ is the stepsize.


2021 ◽  
Vol 24 (4) ◽  
Author(s):  
Alexander I. Bobenko ◽  
Sebastian Heller ◽  
Nick Schmitt

AbstractWe describe the construction of CMC surfaces with symmetries in $\mathbb {S}^{3}$ S 3 and $\mathbb {R}^{3}$ ℝ 3 using a CMC quadrilateral in a fundamental tetrahedron of a tessellation of the space. The fundamental piece is constructed by the generalized Weierstrass representation using a geometric flow on the space of potentials.


2021 ◽  
Vol 24 (4) ◽  
Author(s):  
Thomas Beekenkamp

AbstractThe orthant model is a directed percolation model on $\mathbb {Z}^{d}$ ℤ d , in which all clusters are infinite. We prove a sharp threshold result for this model: if p is larger than the critical value above which the cluster of 0 is contained in a cone, then the shift from 0 that is required to contain the cluster of 0 in that cone is exponentially small. As a consequence, above this critical threshold, a shape theorem holds for the cluster of 0, as well as ballisticity of the random walk on this cluster.


2021 ◽  
Vol 24 (4) ◽  
Author(s):  
Simonetta Abenda

AbstractMaximal minors of Kasteleyn sign matrices on planar bipartite graphs in the disk count dimer configurations with prescribed boundary conditions, and the weighted version of such matrices provides a natural parametrization of the totally non–negative part of real Grassmannians (Postnikov et al. J. Algebr. Combin. 30(2), 173–191, 2009; Lam J. Lond. Math. Soc. (2) 92(3), 633–656, 2015; Lam 2016; Speyer 2016; Affolter et al. 2019). In this paper we provide a geometric interpretation of such variant of Kasteleyn theorem: a signature is Kasteleyn if and only if it is geometric in the sense of Abenda and Grinevich (2019). We apply this geometric characterization to explicitly solve the associated system of relations and provide a new proof that the parametrization of positroid cells induced by Kasteleyn weighted matrices coincides with that of Postnikov boundary measurement map. Finally we use Kasteleyn system of relations to associate algebraic geometric data to KP multi-soliton solutions. Indeed the KP wave function solves such system of relations at the nodes of the spectral curve if the dual graph of the latter represents the soliton data. Therefore the construction of the divisor is automatically invariant, and finally it coincides with that in Abenda and Grinevich (Sel. Math. New Ser. 25(3), 43, 2019; Abenda and Grinevich 2020) for the present class of graphs.


Sign in / Sign up

Export Citation Format

Share Document