local density
Recently Published Documents


TOTAL DOCUMENTS

3054
(FIVE YEARS 450)

H-INDEX

104
(FIVE YEARS 7)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 111
Author(s):  
Harald Rösner ◽  
Christian Kübel ◽  
Stefan Ostendorp ◽  
Gerhard Wilde

Plastic deformation of metallic glasses performed at temperatures well below the glass transition proceeds via the formation of shear bands. In this contribution, we investigated shear bands originating from in situ tensile tests of Al88Y7Fe5 melt-spun ribbons performed under a transmission electron microscope. The observed contrasts of the shear bands were found to be related to a thickness reduction rather than to density changes. This result should alert the community of the possibility of thickness changes occurring during in situ shear band formation that may affect interpretation of shear band properties such as the local density. The observation of a spearhead-like shear front suggests a propagation front mechanism for shear band initiation here.


2022 ◽  
Vol 64 (3) ◽  
pp. 297
Author(s):  
Ю.В. Князев ◽  
А.В. Лукоянов ◽  
Ю.И. Кузьмин ◽  
S. Shanmukharao Samatham ◽  
Akhilesh Kumar Patel ◽  
...  

Results of investigations of the electronic structure and optical properties of Gd5Sb3 and Gd5Ge2Sb compounds are presented. Calculations of band spectra were carried out in frame of local density approximation with a correction for strong correlation effects in 4f shell of rare-earth ion (DFT+U+SO method). Optical constants of these materials were measured by ellipsometric technique in wide wavelength interval. Energy dependencies of a number of spectral parameters were determined. The nature of quantum light absorption is discussed on the base of comparative analysis of the experimental and calculated spectra of optical conductivity.


Aerospace ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Shenghui Cui ◽  
Jiaxin Li ◽  
Shifeng Zhang ◽  
Xibin Bai ◽  
Dongming Sui

In this paper, the design and optimization method of rocket parameters based on the surrogate model and the trajectory simulation system of the 3-DOF air-launched rockets were established. The Gaussian kernel width determination method based on the relationship between local density and width is used to ensure the efficiency and reliability of the optimization method, and at the same time greatly reduces the amount of calculation. An adaptive sampling point updating method was established, which includes three stages: location sampling, exploration sampling, and potential optimal sampling of the potential feasible region. The adaptive sampling is realized by the distance constraint. Based on the precision of the surrogate model, the convergence end criterion was established, which can achieve efficient and reliable probabilistic global optimization. The objective function of the optimization problem was deduced to determine the maximum load mass and reasonable constraints were set to ensure that the rocket could successfully enter orbit. For solid engine rockets with the same take-off mass as Launcherone, the launch altitude and target orbit were optimized and analyzed, and verified by 3-DOF trajectory simulation. The surrogate-based optimization algorithm solved the problem of the overall parameter design optimization of the air-launched rocket and it provides support for the design of air-launched solid rockets.


Author(s):  
Beibing Huang ◽  
Xiaosen Yang ◽  
Qinfang Zhang ◽  
Ning Xu

Abstract The antiferromagnetic topological insulator (AFTI) is topologically protected by the combined time-reversal and translational symmetry $\mathcal{T}_c$. In this paper we investigate the effects of the $s$-wave superconducting pairings on the multilayers of AFTI, which breaks $\mathcal{T}_c$ symmetry and can realize quantum anomalous Hall insulator with unit Chern number. For the weakly coupled pairings, the system corresponds to the topological superconductor (TSC) with the Chern number $C=\pm 2$. We answer the following questions whether the local Chern numbers and chiral Majorana edge modes of such a TSC distribute around the surface layers. By the numerical calculations based on a theoretic model of AFTI, we find that when the local Chern numbers are always dominated by the surface layers, the wavefunctions of chiral Majorana edge modes must not localize on the surface layers and show a smooth crossover from spatially occupying all layers to only distributing near the surface layers, similar to the hinge states in a three dimensional second-order topological phases. The latter phase, denoted by the hinged TSC, can be distinguished from the former phase by the measurements of the local density of state. In addition we also study the superconducting vortex phase transition in this system and find that the exchange field in the AFTI not only enlarges the phase space of topological vortex phase but also enhances its topological stability. These conclusions will stimulate the investigations on superconducting effects of AFTI and drive the studies on chiral Majorana edge modes and vortex Majorana zero modes into a new era.


Author(s):  
Prashant Singh ◽  
Manoj K Harbola

Abstract This article is part-I of a review of density-functional theory (DFT) that is the most widely used method for calculating electronic structure of materials. The accuracy and ease of numerical implementation of DFT methods has resulted in its extensive use for materials design and discovery and has thus ushered in the new field of computational material science. In this article we start with an introduction to Schrödinger equation and methods of its solutions. After presenting exact results for some well-known systems, difficulties encountered in solving the equation for interacting electrons are described. How these difficulties are handled using the variational principle for the energy to obtain approximate solutions of the Schrödinger equation is discussed. The resulting Hartree and Hartree-Fock theories are presented along with results they give for atomic and solid-state systems. We then describe Thomas-Fermi theory and its extensions which were the initial attempts to formulate many-electron problem in terms of electronic density of a system. Having described these theories, we introduce modern density functional theory by discussing Hohenberg-Kohn theorems that form its foundations. We then go on to discuss Kohn-Sham formulation of density-functional theory in its exact form. Next, local density approximation is introduced and solutions of Kohn-Sham equation for some representative systems, obtained using the local density approximation, are presented. We end part-I of the review describing the contents of part-II.


Author(s):  
Jared Omari Agora ◽  
Calford Otieno ◽  
P W O Nyawere ◽  
George S. Manyali

Abstract Doping superconductors are known to vary the superconducting transition temperature TC depending on the degree of holes or electrons introduced in a system. In this study, we report how pressure-induced hole doping influences the TC of GdBa2Cu3O7-x superconducting perovskite. The study was carried out in the framework of density functional theory (DFT) using the Quantum espresso code. Ultrasoft pseudopotential with generalized gradient approximation (GGA) and local density approximation (LDA) functional was used to calculate the ground state energy using the plane waves (PW). The stability criterion was satisfied from the calculated elastic constants. The BCS theory and the Mc Millan’s equation was used to calculate the TC of the material at different conditions of pressure. The underdoped regime where the holes were less than those at optimal doping was found to be below 20 GPa of doping pressure. Optimal doping where the material achieved the highest TC (max) ~ 20 GPa of the doping pressure. Beyond the pressure of ~20 GPa was the over doping regime where a decrease in TC was recorded. The highest calculated TC (max) was ~141.16 K. The results suggest that pressure of ~20 GPa gave rise to the highest TC in the study.


2021 ◽  
Author(s):  
David E. Symer ◽  
Keiko Akagi ◽  
Heather M. Geiger ◽  
Yang Song ◽  
Gaiyun Li ◽  
...  

Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC) and immune evasion (i.e., CD274). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression.


Sign in / Sign up

Export Citation Format

Share Document