new treatment
Recently Published Documents





Bilal Asaad Mubdir ◽  
Hassan Mohammed Ali Bayram

<span>Coronavirus disease (COVID-19) altered the way of caregiving and the new pandemic forced the health systems to adopt new treatment protocols in which remote follow-up is essential. This paper introduces a proposed system to link a remote healthcare unit as it is inside the hospital. Two different network protocols; a global system for mobile communication (GSM) and Wi-Fi were used to simulate the heath data transfer from the two different geographical locations, using Raspberry Pi development board and Microcontroller units. Message queuing telemetry transport (MQTT) protocol was employed to transfer the measured data from the healthcare unit to the hospital’s Gateway. The gateway is used to route the aggregated health data from healthcare units to the hospital server, doctors’ dashboards, and the further processing. The system was successfully implemented and tested, where the experimental tests show that the remote healthcare units using a GSM network consumed about 900 mWh. A high percentage of success data packets transfer was recorded within the network framework as it reaches 99.89% with an average round trip time (RTT) of 7.5 milliseconds and a data transfer rate up to 12.3 kbps.</span>

2022 ◽  
Vol 23 (2) ◽  
pp. 934
Rocío Fuente ◽  
María García-Bengoa ◽  
Ángela Fernández-Iglesias ◽  
Helena Gil-Peña ◽  
Fernando Santos ◽  

X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.

Katarzyna Trzos ◽  
Natalia Pydyn ◽  
Jolanta Jura ◽  
Jerzy Kotlinowski

AbstractMurine models of human diseases are of outmost importance for both studying molecular mechanisms driving their development and testing new treatment strategies. In this review, we first discuss the etiology and risk factors for autoimmune liver disease, including primary biliary cholangitis, autoimmune hepatitis and primary sclerosing cholangitis. Second, we highlight important features of murine transgenic models that make them useful for basic scientists, drug developers and clinical researchers. Next, a brief description of each disease is followed by the characterization of selected animal models.

2022 ◽  
Vol 8 ◽  
Yutaka Kaneko ◽  
Takanori Murakami ◽  
Koichi Nishitsuka ◽  
Yuya Takakubo ◽  
Michiaki Takagi ◽  

Baricitinib is a Janus kinase (JAK) inhibitor used to treat refractory rheumatoid arthritis and blocks the subtypes JAK1 and JAK2. A 35-year-old man with seronegative rheumatoid arthritis complicated by bilateral severe non-granulomatous panuveitis was resistant to steroid treatment, multiple conventional disease-modifying antirheumatic drugs (methotrexate and salazosulfapyridine), and TNF-α inhibitors (adalimumab and infliximab). Therefore, the TNF-α inhibitors were switched to baricitinib to decrease the activity of systemic arthritis. Along with the amelioration of inflammatory activity in seronegative rheumatoid arthritis, the inflammatory activity of uveitis was decreased. Vitreous opacity, serous retinal detachment, and anterior chamber cells showed improvement. Baricitinib was effective not only in refractory systemic arthritis but also in uveitis, which may provide a new treatment option for patients with refractory uveitis.

Xiaosu Miao ◽  
Wei Cui

Abstract Female infertility is a heterogeneous disorder with a variety of complex causes, including inflammation and oxidative stress, which are also closely associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS). As a new treatment for PCOS, berberine (BER), a natural compound from Berberis, has been clinically applied recently. However, the mechanisms underlying the association between BER and embryogenesis are still largely unknown. In this study, effects of BER on preimplantation development was evaluated by using both normal and inflammatory culture conditions induced by lipopolysaccharide (LPS) in the mouse. Our data first suggest that BER itself (25 nM) does not affect embryo quality or future developmental potency, moreover, it can effectively alleviate LPS-induced embryonic damage by mitigating apoptosis via ROS−/caspase-3-dependent pathways and by suppressing pro-inflammatory cytokines via inhibition of NF-κB signaling pathway during preimplantation embryo development. In addition, skewed cell lineage specification in inner cell mass (ICM) and primitive endoderm (PE) caused by LPS can also be successfully rescued with BER. In summary, these findings for the first time demonstrate the non-toxicity of low doses of BER and its anti-apoptotic and anti-oxidative properties on embryonic cells during mammalian preimplantation development.

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 158
Ming-Jen Lee ◽  
Inyoul Lee ◽  
Kai Wang

The development of new sequencing technologies in the post-genomic era has accelerated the identification of causative mutations of several single gene disorders. Advances in cell and animal models provide insights into the underlining pathogenesis, which facilitates the development and maturation of new treatment strategies. The progress in biochemistry and molecular biology has established a new class of therapeutics—the short RNAs and expressible long RNAs. The sequences of therapeutic RNAs can be optimized to enhance their stability and translatability with reduced immunogenicity. The chemically-modified RNAs can also increase their stability during intracellular trafficking. In addition, the development of safe and high efficiency carriers that preserves the integrity of therapeutic RNA molecules also accelerates the transition of RNA therapeutics into the clinic. For example, for diseases that are caused by genetic defects in a specific protein, an effective approach termed “protein replacement therapy” can provide treatment through the delivery of modified translatable mRNAs. Short interference RNAs can also be used to treat diseases caused by gain of function mutations or restore the splicing aberration defects. Here we review the applications of newly developed RNA-based therapeutics and its delivery and discuss the clinical evidence supporting the potential of RNA-based therapy in single-gene neurological disorders.

2022 ◽  
Vol 23 (2) ◽  
pp. 798
Suvoshree Ghosh ◽  
Johannes Oldenburg ◽  
Katrin J. Czogalla-Nitsche

Vitamin K dependent coagulation factor deficiency type 1 (VKCFD1) is a rare hereditary bleeding disorder caused by mutations in γ-Glutamyl carboxylase (GGCX) gene. The GGCX enzyme catalyzes the γ-carboxylation of 15 different vitamin K dependent (VKD) proteins, which have function in blood coagulation, calcification, and cell signaling. Therefore, in addition to bleedings, some VKCFD1 patients develop diverse non-hemorrhagic phenotypes such as skin hyper-laxity, skeletal dysmorphologies, and/or cardiac defects. Recent studies showed that GGCX mutations differentially effect γ-carboxylation of VKD proteins, where clotting factors are sufficiently γ-carboxylated, but not certain non-hemostatic VKD proteins. This could be one reason for the development of diverse phenotypes. The major manifestation of non-hemorrhagic phenotypes in VKCFD1 patients are mineralization defects. Therefore, the mechanism of regulation of calcification by specific VKD proteins as matrix Gla protein (MGP) and Gla-rich protein (GRP) in physiological and pathological conditions is of high interest. This will also help to understand the patho-mechanism of VKCFD1 phenotypes and to deduce new treatment strategies. In the present review article, we have summarized the recent findings on the function of GRP and MGP and how these proteins influence the development of non-hemorrhagic phenotypes in VKCFD1 patients.

2022 ◽  
pp. 0734242X2110701
Roland Berger ◽  
Joachim Lehner

It is a well-established fact that the quality and quantity of landfill gas (LFG) start declining after a landfill is closed to further waste intake. Conventional gas treatment and utilisation systems such as flares and gas-driven engines require a certain quality of LFG: specifically, a sufficient methane concentration. Various measures are utilised to maintain the necessary quality of LFG, including a turn-down of gas extraction rates and a shutdown of low-quality gas wells, resulting in a decline of LFG production. This, however, does not have to be the case. The low calorific value (LCV) LFG capture and treatment technology developed by e-flox and referred to in this article as ‘LCV LFG System’ can significantly increase the collection rate and the amount of treated methane in an old landfill. This article introduces such new treatment measures, describes gas capture calculation methodologies and presents actual results based on a medium-sized landfill in Germany. The study demonstrates, among other things, that the LCV LFG system can reduce the CO2 avoidance costs to roughly 10 €/tCO2eq. We present this new technology as a quick and straightforward measure of dealing with the climate issues related to methane emissions of old landfills.

2022 ◽  
Vol 13 (1) ◽  
Yonghui Hou ◽  
Bingyu Zhou ◽  
Ming Ni ◽  
Min Wang ◽  
Lingli Ding ◽  

Abstract Background Tendon is a major component of musculoskeletal system connecting the muscles to the bone. Tendon injuries are very common orthopedics problems leading to impeded motion. Up to now, there still lacks effective treatments for tendon diseases. Methods Tendon stem/progenitor cells (TSPCs) were isolated from the patellar tendons of SD rats. The expression levels of genes were evaluated by quantitative RT-PCR. Immunohistochemistry staining was performed to confirm the presence of tendon markers in tendon tissues. Bioinformatics analysis of data acquired by RNA-seq was used to find out the differentially expressed genes. Rat patellar tendon injury model was used to evaluate the effect of U0126 on tendon injury healing. Biomechanical testing was applied to evaluate the mechanical properties of newly formed tendon tissues. Results In this study, we have shown that ERK inhibitor U0126 rather PD98059 could effectively increase the expression of tendon-related genes and promote the tenogenesis of TSPCs in vitro. To explore the underlying mechanisms, RNA sequencing was performed to identify the molecular difference between U0126-treated and control TSPCs. The result showed that GDF6 was significantly increased by U0126, which is an important factor of the TGFβ superfamily regulating tendon development and tenogenesis. In addition, NBM (nonwoven-based gelatin/polycaprolactone membrane) which mimics the native microenvironment of the tendon tissue was used as an acellular scaffold to carry U0126. The results demonstrated that when NBM was used in combination with U0126, tendon healing was significantly promoted with better histological staining outcomes and mechanical properties. Conclusion Taken together, we have found U0126 promoted tenogenesis in TSPCs through activating GDF6, and NBM loaded with U0126 significantly promoted tendon defect healing, which provides a new treatment for tendon injury.

2022 ◽  
Vol 17 (1) ◽  
Pierre Trémolières ◽  
Ana Gonzalez-Moya ◽  
Amaury Paumier ◽  
Martine Mege ◽  
Julien Blanchecotte ◽  

Abstract Objectives To characterise the motion of pulmonary tumours during stereotactic body radiation therapy (SBRT) and to evaluate different margins when creating the planning target volume (PTV) on a single 4D CT scan (4DCT). Methods We conducted a retrospective single-site analysis on 30 patients undergoing lung SBRT. Two 4DCTs (4DCT1 and 4DCT2) were performed on all patients. First, motion was recorded for each 4DCT in anterior–posterior (AP), superior-inferior (SI) and rightleft (RL) directions. Then, we used 3 different margins (3,4 and 5 mm) to create the PTV, from the internal target volume (ITV) of 4DCT1 only (PTV D1 + 3, PTV D1 + 4, PTV D1 + 5). We compared, using the Dice coefficient, the volumes of these 3 PTVs, to the PTV actually used for the treatment (PTVttt). Finally, new treatment plans were calculated using only these 3 PTVs. We studied the ratio of the D2%, D50% and D98% between each new plan and the plan actually used for the treatment (D2% PTVttt, D50% PTVttt, D50% ITVttt D98% PTVttt). Results 30 lesions were studied. The greatest motion was observed in the SI axis (8.8 ± 6.6 [0.4–25.8] mm). The Dice index was higher when comparing PTVttt to PTV D1 + 4 mm (0.89 ± 0.04 [0.82–0.98]). Large differences were observed when comparing plans relative to PTVttt and PTV D1 + 3 for D98% PTVttt (0.85 ± 0.24 [0.19–1.00]). and also for D98% ITVttt (0.93 ± 0.12 [0.4–1.0]).D98% PTVttt (0.85 ± 0.24 [0.19–1.00], p value = 0.003) was statistically different when comparing plans relative to PTVttt and PTV D1 + 3. No stastistically differences were observed when comparing plans relative to PTVttt and PTV D1 + 4. A difference greater than 10% relative to D98% PTVttt was found for only in one UL lesion, located under the carina. Conclusion A single 4DCT appears feasible for upper lobe lesions located above the carina, using a 4-mm margin to generate the PTV. Advance in knowledge Propostion of a personalized SBRT treatment (number of 4DCT, margins) according to tumor location (above or under the carina).

Sign in / Sign up

Export Citation Format

Share Document