The Critical Hyperbola for a Hamiltonian Elliptic System with Weights

Author(s):  
Djairo G. de Figueiredo ◽  
Ireneo Peral ◽  
Julio D. Rossi
2019 ◽  
Vol 150 (4) ◽  
pp. 1737-1768 ◽  
Author(s):  
Djairo G. de Figueiredo ◽  
João Marcos do Ó ◽  
Jianjun Zhang

AbstractThe aim of this paper is to study Hamiltonian elliptic system of the form 0.1$$\left\{ {\matrix{ {-\Delta u = g(v)} & {{\rm in}\;\Omega,} \cr {-\Delta v = f(u)} & {{\rm in}\;\Omega,} \cr {u = 0,v = 0} & {{\rm on}\;\partial \Omega,} \cr } } \right.$$ where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane 0.2$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).


2016 ◽  
Vol 15 (2) ◽  
pp. 599-622 ◽  
Author(s):  
Jian Zhang ◽  
Wen Zhang ◽  
Xiaoliang Xie

2007 ◽  
Vol 187 (3) ◽  
pp. 531-545 ◽  
Author(s):  
Djairo G. de Figueiredo ◽  
Ireneo Peral ◽  
Julio D. Rossi

2020 ◽  
Vol 10 (1) ◽  
pp. 331-352
Author(s):  
Wen Zhang ◽  
Jian Zhang ◽  
Heilong Mi

Abstract This paper is concerned with the following nonlinear Hamiltonian elliptic system with gradient term $$\begin{array}{} \displaystyle \left\{\,\, \begin{array}{ll} -{\it\Delta} u +\vec{b}(x)\cdot \nabla u+V(x)u = H_{v}(x,u,v)\,\,\hbox{in}\,\mathbb{R}^{N},\\[-0.3em] -{\it\Delta} v -\vec{b}(x)\cdot \nabla v +V(x)v = H_{u}(x,u,v)\,\,\hbox{in}\,\mathbb{R}^{N}.\\ \end{array} \right. \end{array}$$ Compared with some existing issues, the most interesting feature of this paper is that we assume that the nonlinearity satisfies a local super-quadratic condition, which is weaker than the usual global super-quadratic condition. This case allows the nonlinearity to be super-quadratic on some domains and asymptotically quadratic on other domains. Furthermore, by using variational method, we obtain new existence results of ground state solutions and infinitely many geometrically distinct solutions under local super-quadratic condition. Since we are without more global information on the nonlinearity, in the proofs we apply a perturbation approach and some special techniques.


2020 ◽  
Vol 10 (1) ◽  
pp. 233-260
Author(s):  
Jian Zhang ◽  
Jianhua Chen ◽  
Quanqing Li ◽  
Wen Zhang

Abstract In this paper, we study the following nonlinear Hamiltonian elliptic system with gradient term $$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} -\epsilon^{2}{\it\Delta} \psi +\epsilon \vec{b}\cdot \nabla \psi +\psi+V(x)\varphi=f(|\eta|)\varphi~~\hbox{in}~\mathbb{R}^{N},\\ -\epsilon^{2}{\it\Delta} \varphi -\epsilon \vec{b}\cdot \nabla \varphi +\varphi+V(x)\psi=f(|\eta|)\psi~~\hbox{in}~\mathbb{R}^{N},\\ \end{array} \right. \end{array}$$ where η = (ψ, φ) : ℝN → ℝ2, ϵ is a small positive parameter and b⃗ is a constant vector. We require that the potential V only satisfies certain local condition. Combining this with other suitable assumptions on f, we construct a family of semiclassical solutions. Moreover, the concentration phenomena around local minimum of V, convergence and exponential decay of semiclassical solutions are also explored. In the proofs we apply penalization method, linking argument and some analytical techniques since the local property of the potential and the strongly indefinite character of the energy functional.


2017 ◽  
Vol 37 (8) ◽  
pp. 4565-4583 ◽  
Author(s):  
Jian Zhang ◽  
◽  
Wen Zhang ◽  
Xianhua Tang ◽  

Sign in / Sign up

Export Citation Format

Share Document