Non-Nehari Manifold Method for Hamiltonian Elliptic System with Hardy Potential: Existence and Asymptotic Properties of Ground State Solution

2022 ◽  
Vol 32 (2) ◽  
Author(s):  
Peng Chen ◽  
Xianhua Tang ◽  
Limin Zhang
2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wenbo Wang ◽  
Jianwen Zhou ◽  
Yongkun Li

In the present paper, we consider the following Hamiltonian elliptic system with Choquard’s nonlinear term −Δu+Vxu=∫ΩGvy/x−yβdygv in Ω,−Δv+Vxv=∫ΩFuy/x−yαdyfu in Ω,u=0,v=0 on ∂Ω,where Ω⊂ℝN is a bounded domain with a smooth boundary, 0<α<N, 0<β<N, and F is the primitive of f, similarly for G. By establishing a strongly indefinite variational setting, we prove that the above problem has a ground state solution.


2019 ◽  
Vol 150 (4) ◽  
pp. 1737-1768 ◽  
Author(s):  
Djairo G. de Figueiredo ◽  
João Marcos do Ó ◽  
Jianjun Zhang

AbstractThe aim of this paper is to study Hamiltonian elliptic system of the form 0.1$$\left\{ {\matrix{ {-\Delta u = g(v)} & {{\rm in}\;\Omega,} \cr {-\Delta v = f(u)} & {{\rm in}\;\Omega,} \cr {u = 0,v = 0} & {{\rm on}\;\partial \Omega,} \cr } } \right.$$ where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane 0.2$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang

AbstractIn this article, we consider the following quasilinear Schrödinger–Poisson system $$ \textstyle\begin{cases} -\Delta u+V(x)u-u\Delta (u^{2})+K(x)\phi (x)u=g(x,u), \quad x\in \mathbb{R}^{3}, \\ -\Delta \phi =K(x)u^{2}, \quad x\in \mathbb{R}^{3}, \end{cases} $$ { − Δ u + V ( x ) u − u Δ ( u 2 ) + K ( x ) ϕ ( x ) u = g ( x , u ) , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , where $V,K:\mathbb{R}^{3}\rightarrow \mathbb{R}$ V , K : R 3 → R and $g:\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}$ g : R 3 × R → R are continuous functions; g is of subcritical growth and has some monotonicity properties. The purpose of this paper is to find the ground state solution of (0.1), i.e., a nontrivial solution with the least possible energy by taking advantage of the generalized Nehari manifold approach, which was proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct solutions are gained while g is odd in u.


2020 ◽  
Vol 20 (3) ◽  
pp. 511-538 ◽  
Author(s):  
Lin Li ◽  
Patrizia Pucci ◽  
Xianhua Tang

AbstractIn this paper, we study the existence of ground state solutions for the nonlinear Schrödinger–Bopp–Podolsky system with critical Sobolev exponent\left\{\begin{aligned} \displaystyle{}{-}\Delta u+V(x)u+q^{2}\phi u&% \displaystyle=\mu|u|^{p-1}u+|u|^{4}u&&\displaystyle\phantom{}\mbox{in }\mathbb% {R}^{3},\\ \displaystyle{-}\Delta\phi+a^{2}\Delta^{2}\phi&\displaystyle=4\pi u^{2}&&% \displaystyle\phantom{}\mbox{in }\mathbb{R}^{3},\end{aligned}\right.where {\mu>0} is a parameter and {2<p<5}. Under certain assumptions on V, we prove the existence of a nontrivial ground state solution, using the method of the Pohozaev–Nehari manifold, the arguments of Brézis–Nirenberg, the monotonicity trick and a global compactness lemma.


2020 ◽  
Vol 20 (4) ◽  
pp. 819-831
Author(s):  
Yinbin Deng ◽  
Qingfei Jin ◽  
Wei Shuai

AbstractWe study the existence of positive ground state solution for Choquard systems. In the autonomous case, we prove the existence of at least one positive ground state solution by the Pohozaev manifold method and symmetric-decreasing rearrangement arguments. Moreover, we show that each positive ground state solution is radial symmetric. While, in the nonautonomous case, a positive ground state solution is obtained by using a monotonicity trick and a global compactness lemma. We remark that, under our assumptions of the nonlinearity {W_{u}}, the search of ground state solutions cannot be reduced to the study of critical points of a functional restricted to a Nehari manifold.


2021 ◽  
Vol 7 (3) ◽  
pp. 3719-3730
Author(s):  
Yanhua Wang ◽  
◽  
Min Liu ◽  
Gongming Wei ◽  

<abstract><p>In this paper we consider the following system of coupled biharmonic Schrödinger equations</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \ \left\{ \begin{aligned} \Delta^{2}u+\lambda_{1}u = u^{3}+\beta u v^{2}, \\ \Delta^{2}v+\lambda_{2}v = v^{3}+\beta u^{2}v, \end{aligned} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ (u, v)\in H^{2}({\mathbb{R}}^{N})\times H^2(\mathbb R^N) $, $ 1\leq N\leq7 $, $ \lambda_{i} &gt; 0 (i = 1, 2) $ and $ \beta $ denotes a real coupling parameter. By Nehari manifold method and concentration compactness theorem, we prove the existence of ground state solution for the coupled system of Schrödinger equations. Previous results on ground state solutions are obtained in radially symmetric Sobolev space $ H_r^2(\mathbb R^N)\times H_r^2(\mathbb R^N) $. When $ \beta $ satisfies some conditions, we prove the existence of ground state solution in the whole space $ H^2(\mathbb R^N)\times H^2(\mathbb R^N) $.</p></abstract>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yuan Gao ◽  
Lishan Liu ◽  
Shixia Luan ◽  
Yonghong Wu

AbstractA Kirchhoff-type problem with concave-convex nonlinearities is studied. By constrained variational methods on a Nehari manifold, we prove that this problem has a sign-changing solution with least energy. Moreover, we show that the energy level of this sign-changing solution is strictly larger than the double energy level of the ground state solution.


Sign in / Sign up

Export Citation Format

Share Document