variational framework
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 55)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Afzal Rahman ◽  
Haider Ali ◽  
Noor Badshah ◽  
Muhammad Zakarya ◽  
Hameed Hussain ◽  
...  

Abstract In image segmentation and in general in image processing, noise and outliers distort contained information posing in this way a great challenge for accurate image segmentation results. To ensure a correct image segmentation in presence of noise and outliers, it is necessary to identify the outliers and isolate them during a denoising pre-processing or impose suitable constraints into a segmentation framework. In this paper, we impose suitable removing outliers constraints supported by a well-designed theory in a variational framework for accurate image segmentation. We investigate a novel approach based on the power mean function equipped with a well established theoretical base. The power mean function has the capability to distinguishes between true image pixels and outliers and, therefore, is robust against outliers. To deploy the novel image data term and to guaranteed unique segmentation results, a fuzzy-membership function is employed in the proposed energy functional. Based on qualitative and quantitative extensive analysis on various standard data sets, it has been observed that the proposed model works well in images having multi-objects with high noise and in images with intensity inhomogeneity in contrast with the latest and state of the art models.


2022 ◽  
Vol 170 ◽  
pp. 103603
Author(s):  
S. Ali Faghidian ◽  
Krzysztof Kamil Żur ◽  
J.N. Reddy

Author(s):  
AbolFazl Shahabodini ◽  
Bahman Ahmadi

In this research, an elastic model based on the continuum mechanics is developed to study the static behaviors of functionally graded (FG) arbitrary straight-sided quadrilateral nanoplates. The model is constructed in the framework of Gurtin-Murdoch’s surface and Mindlin’s plate theories to account for the surface energy and shear deformation effects, simultaneously. The variational differential quadrature (VDQ) method is used along with a mapping technique to do the discretization process in a variational framework by means of differential and integral operators. Consequently, a weak form of governing equations is obtained from the energy quadratic representation of the problem. The solution method is of a distinguished feature as it involves just the first-order derivative of the field components in the mapping and discretization. After assuring the effectiveness of presented model by doing comparative studies, the critical buckling load and static deflection of the FG nanoplates with different shapes in geometry are investigated considering the surface effects. It is found that the surface energies effect on the static behavior of the rectangular nanoplates is more significant as compared to the non-rectangular nanoplates.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 186
Author(s):  
Sami Bourouis ◽  
Yogesh Pawar ◽  
Nizar Bouguila

Finite Gamma mixture models have proved to be flexible and can take prior information into account to improve generalization capability, which make them interesting for several machine learning and data mining applications. In this study, an efficient Gamma mixture model-based approach for proportional vector clustering is proposed. In particular, a sophisticated entropy-based variational algorithm is developed to learn the model and optimize its complexity simultaneously. Moreover, a component-splitting principle is investigated, here, to handle the problem of model selection and to prevent over-fitting, which is an added advantage, as it is done within the variational framework. The performance and merits of the proposed framework are evaluated on multiple, real-challenging applications including dynamic textures clustering, objects categorization and human gesture recognition.


2021 ◽  
pp. 1-32
Author(s):  
Mihaï Bostan

The subject matter of this work concerns the propagation of the electro-magnetic fields through strongly anisotropic media, in the three dimensional setting. We concentrate on the asymptotic behavior for the solutions of the Maxwell equations when the electric permittivity tensor is strongly anisotropic. We derive limit models and prove their well-posedness. We appeal to the variational framework and study the propagation speed of the solutions. We prove that almost all the electro-magnetic energy concentrates inside the propagation cone of the limit model.


Author(s):  
Ahmed Abdulqader Hussein ◽  
Sabahaldin A. Hussain ◽  
Ahmed Hameed Reja

<p>A modified mixed Gaussian plus impulse image denoising algorithm based on weighted encoding with image sparsity and nonlocal self-similarity priors regularization is proposed in this paper. The encoding weights and the priors imposed on the images are incorporated into a variational framework to treat more complex mixed noise distribution. Such noise is characterized by heavy tails caused by impulse noise which needs to be eliminated through proper weighting of encoding residual. The outliers caused by the impulse noise has a significant effect on the encoding weights. Hence a more accurate residual encoding error initialization plays the important role in overall denoising performance, especially at high impulse noise rates. In this paper, outliers free initialization image, and an easier to implement a parameter-free procedure for updating encoding weights have been proposed. Experimental results demonstrate the capability of the proposed strategy to recover images highly corrupted by mixed Gaussian plus impulse noise as compared with the state of art denoising algorithm. The achieved results motivate us to implement the proposed algorithm in practice.</p>


Sign in / Sign up

Export Citation Format

Share Document