Sigmoid Data Fitting by Least Squares Adjustment of Second and Third Divided Differences

Author(s):  
Ioannis C. Demetriou
2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


1936 ◽  
Vol 15 (1) ◽  
pp. 141-176
Author(s):  
Duncan C. Fraser

SynopsisThe paper is intended as an elementary introduction and companion to the paper on “Orthogonal Polynomials,” by G. J. Lidstone, J.I.A., vol. briv., p. 128, and the paper on the “Sum and Integral of the Product of Two Functions,” by A. W. Joseph, J.I.A., vol. lxiv., p. 329; and also to Dr. Aitken's paper on the “Graduation of Data by the Orthogonal Polynomials of Least Squares,” Proc. Roy. Soc. Edin., vol. liii., p. 54.Following Dr. Aitken Σux is defined for the immediate purpose to be u0+…+ux−1.The scheme of successive summations is set out in the form of a difference diagram and is extended to negative arguments. The special point to which attention is drawn is the existence of a wedge of zeros between the sums for positive arguments and those for negative arguments.The rest of the paper is for the greater part a study of the table of binomial coefficients for positive and for negative arguments. The Tchebychef polynomials are simple functions of the binomial coefficients, and after a description of a particular example and of its properties general methods are given of forming the polynomials by means of tables of differences. These tables furnish examples of simple, differences, of divided differences, of adjusted differences, and of a system of special adjusted differences which gives a very easy scheme for the formation of the Tchebychef polynomials.


1968 ◽  
Vol 22 (5) ◽  
pp. 22
Author(s):  
Irving H. Siegel

Sign in / Sign up

Export Citation Format

Share Document