Engineering Proceedings
Latest Publications


TOTAL DOCUMENTS

615
(FIVE YEARS 615)

H-INDEX

1
(FIVE YEARS 1)

Published By MDPI AG

2673-4591

2022 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Paolo Bison ◽  
Gianluca Cadelano ◽  
Giovanni Ferrarini ◽  
Davide Moroni

In submitting conference proceedings to Engineering Proceedings, the volume editors of the proceedings certify to the publisher that all papers published in this volume have been subjected to a peer review administered by the volume editors [...]


2022 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Sajid Ali Murtaza ◽  
Nazam Siddique ◽  
Javaid Aslam ◽  
Waqas Latif ◽  
Muhammad Wasif ◽  
...  

The AC power system is leading due to its established standards. The depleting thread of fossil fuels, the significant increase in cost and the alarming environmental situation raises concerns. An Islanded DC microgrid, due to its novel characteristics of being able to withstand faulty conditions, has increased the reliability, accuracy, ease of integration, and efficiency of the power system. Renewable energy sources, characteristically DC, have wide usability in a distributive network and, accordingly, less circuitry and conversion stages are required, eliminating the need of reactive power compensation and frequency sync. Constant power loads (CPLs) are the reason for instability in the DC microgrid. Various centralized stability techniques have been proposed in the literature; however, the grid system collapses if there is a fault. To compensate, an efficient distributive control architecture, i.e., droop control method is proposed in this research. The significant advantage of using the droop control technique includes easy implementation, high reliability and flexibility, a reduced circulating current, a decentralized control with local measurements, the absence of a communication link and, thus, it is economic. Moreover, it offers local control for each individual power source in the microgrid. To investigate the stability of the islanded DC microgrid with constant power loads using the droop control technique, a small signal model of the islanded DC microgrid was developed in MATLAB/Simulink. Simulations were carried out to show the efficiency of the proposed controller and analyze the stability of the power system with constant power loads.


2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Wajeeha Bibi ◽  
Muhammad Asif ◽  
Jawad Rabbi

VMD is one of the desalination technologies used for drinking water purification because of it higher permeate flux and lower energy consumption, and it uses low grade energy for operation. However, there are some critical problems related to VMD, one of which is membrane fouling. In the present study, the fouling phenomenon in VMD is investigated using constant pressure-blocking filtration laws. The results of constant pressure-blocking filtration law indicated that the permeate flux was initially unaffected by the cake layer, but with the passage of time as the pores began to constrict, a formation of a relatively thick cake layer was observed, which resulted in the decrease of permeate flux.


2022 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Amal Bouich ◽  
Julia Marí-Guaita ◽  
Asmaa Bouich ◽  
Inmaculada Guaita Pradas ◽  
Bernabé Marí

Herein, we examine the impact of cations on the structural, morphological, optical properties and degradation of lead perovskite APbI3 (where A = MA, FA, Cs). Its structure, surface morphology and optical properties have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Visible spectrometer. The structure of perovskite thin films was found to be in the direction of (110) plane. It is seen from the XRD results that this kind of cation assumes a significant part in stabilising and improving the performance of APbI3 based solar cells. Here, the cesium lead iodide thin films show a smooth and homogenous surface and enormous grain size without pinhole perovskite film. An optical investigation uncovered that the band gap is in a range from 1.4 to 1.8 eV for the different cations. Additionally, in ~60% humidity under dark conditions for two weeks, the structural and optical properties of CsPbI3 films remained good. Furthermore, the efficiency of FTO/TIO2/CSPbI3/Spiro-Ometad/Au solar cells was calculated to be 21.48%.


2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Saif-ur-Rehman ◽  
Muhammad Khaliq U Zaman ◽  
Muhammad Ahsan Waseem ◽  
Shafiq Uz Zaman ◽  
Muhammad Shozab Mehdi

In this research, a novel DES (choline chloride + decanoic acid) was synthesized, and SBA-15 was functionalized by the DES to form a DES-SBA filler to fabricate MMMs. DES-SBA-based MMMs at 5%, 10%, 15%, and 20% were synthesized and evaluated. The DES-SBA-based MMMs were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Gas permeation tests were applied to the pure and mixed gas samples, and the results of the permeability and selectivity (CO2/CH4, and CO2/N2) of the membranes are reported. DES modification of SBA-15 increased the efficiency of the synthesized MMMs in comparison with the pristine polysulfone membrane.


2022 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Christos Stratakis ◽  
Nikolaos Menelaos Stivaktakis ◽  
Manousos Bouloukakis ◽  
Asterios Leonidis ◽  
Maria Doxastaki ◽  
...  

This work blends the domain of Precision Agriculture with the prevalent paradigm of Ambient Intelligence, so as to enhance the interaction between farmers and Intelligent Environments, and support their various daily agricultural activities, aspiring to improve the quality and quantity of cultivated plants. In this paper, two systems are presented, namely the Intelligent Greenhouse and the AmI seedbed, targeting a wide range of agricultural activities, starting from planting the seeds, caring for each individual sprouted plant up to their transplantation in the greenhouse, where the provision for the entire plantation lasts until the harvesting period.


2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Kamran Mahboob ◽  
Qasim Awais ◽  
Muhammad Awais ◽  
Ahsan Naseem ◽  
Safi Ullah ◽  
...  

An important part of future global energy depends on the development of the solar industry. To date, we have noticed the shift from fossil fuels energy towards renewable energy. The past decade has shown significant progress in computer science, and CAD is increasingly used for design and development. Visualization of the data generated from the models in the CAD program plays an important role in the creation of state-of-the-art designs. An important limitation during the design phase is the visualization of three-dimensional geometry. This article attempts to illustrate the use of VR technologies in solar thermal power plant development. This article analyzes various strategies and methods for the visualization of CAD models in virtual reality. Android phone interfaces with a desktop computer, as well as head movement control strategies, are discussed. It is concluded that VR technologies can help with visualization, as well as in the development of the field of solar thermal power plants, having minimal design-related issues.


2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Sohaib Siddique Butt ◽  
Mahnoor Fatima ◽  
Ali Asghar ◽  
Wasif Muhammad

Sound Source Localization (SSL) and gaze shift to the sound source behavior is an integral part of a socially interactive humanoid robot perception system. In noisy and reverberant environments, it is non-trivial to estimate the location of a sound source and accurately shift gaze in its direction. Previous SSL algorithms are deficient in the optimum approximation of distance to audio sources and to accurately detect, interpret, and differentiate the actual sound from comparable sound sources due to challenging acoustic environments. In this article, a learning-based model is presented to achieve noiseless and reverberation-resistant sound source localization in the real-world scenarios. The proposed system utilizes a multi-layered Gaussian Cross-Correlation with Phase Transform (GCC-PHAT) signal processing technique as a baseline for a Generalized Cross Correlation Convolution Neural Network (GCC-CNN) model. The proposed model is integrated with an efficient rotation algorithm to predict and orient toward the sound source. The performance of the proposed method is compared with the state-of-art deep network-based sound source localization methods. The findings of the proposed method outperform the existing neural network-based approaches by achieving the highest accuracy of 96.21% for an active binaural auditory perceptual system.


2022 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Qasim Awais ◽  
Asad Farooq ◽  
Waqas Ali ◽  
Reshal Afzal ◽  
Adeel Khalid

Conversion of electric power from a high voltage to a low voltage causes power losses that also require efficient circuit design techniques to be implemented for durability of a system. Energy harvesting techniques have been implemented to cater to the power demand of low power electronic devices using electromagnetic, electrostatic, and other related technologies. This paper represents the compact design of an antenna system tuned at 2.45 GHz for radio frequency energy harvesting applications. The simulation results achieve a better gain of 5.4 dB along with enhanced radiation patterns. Impedance matching for 50 Ohm is implemented using a high frequency structure simulator (HFSS). The results of the antenna gain, VSWR, and radiation efficiency are compared with the literature. Furthermore, the size of the antenna system has great significance in medical and military related applications; this aspect is also considered in this design and overall, a 20 mm × 37 mm compact antenna is achieved by using mm wave considerations. This antenna design can be embedded in the wireless sensor network (WSN), RFID, and IoT related application to generate the required power required. Mostly, WSN nodes currently use traditional batteries that need to be replaced after some time. As in most cases, WSN nodes are scattered in wide geographical areas, so maintaining the power to these systems becomes challenging. RF energy harvesting provides a solution in these cases where wind, vibration, and solar sources are scarce. The simulated impedance bandwidth is found to range from 1.1 GHz to 5.2 GHz within the acceptable VSWR values.


2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Shahid Amjad

There is potential for harnessing renewable energy from coastal waves and tides, from the coastal and offshore areas of Pakistan. The Sindh coast is a complex creek network located in the 170 km of the Indus deltaic area. The flood and ebb of tides in and out of these creeks have a high velocity of 0.2–0.5 m/s. NIO Pakistan has conducted preliminary feasibility surveys for energy extraction from the Indus deltaic creek system. The 17 major creeks have the capacity to produce estimated energy of approximately 1100 MW. The seawater ingresses inland at some places up to 80 km due to the tidal fluctuation, which is favorable for energy extraction from tidal currents in coastal Sindh. In total, 71% of our Planet Earth is covered by the oceans. The oceans are massive collectors of solar radiation received from the sun. The oceans store the potential energy that is received in the form of incident radiation from the sun that generates thermal energy. A 10 °C temperature difference can be harnessed between the surface and bottom water, using a working fluid. The thermal difference absorbed by the oceans can be converted into electricity through ocean thermal energy conversion (OTEC). The ocean tidal and wave energy has advantages over energy produced using different fossil fuels; there are also several benefits of using renewable sources of ocean energy. Viability of ocean energy in Pakistan is discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document