SPARTAN/SEXTANT/COMPASS: Advancing Space Rover Vision via Reconfigurable Platforms

Author(s):  
George Lentaris ◽  
Ioannis Stamoulias ◽  
Dionysios Diamantopoulos ◽  
Konstantinos Maragos ◽  
Kostas Siozios ◽  
...  
2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Xi Kang ◽  
Jian S. Dai

The parallel mechanism with a reconfigurable platform retains all advantages of parallel mechanisms and provides additional functions by virtue of the reconfigurable platform, leading to kinematic coupling between limbs that restricts development of the mechanism. This paper aims at dealing with kinematic coupling between limbs by investigating the transferability of limb constraints and their degrees of relevance to the platform constraints based on the geometric model of the mechanism. The paper applies screw-system theory to verifying the degree of relevance between limb constraint wrenches and platform constraint wrenches, and reveals the transferability of limb constraints, to obtain the final resultant wrenches and twists of the end effector. The proposed method is extended to parallel mechanisms with planar n-bar reconfigurable platforms, spherical n-bar reconfigurable platforms, and other spatial reconfigurable platforms and lends itself to a way of studying a parallel mechanism with a reconfigurable platform.


2012 ◽  
Vol 5 (3) ◽  
pp. 1-16 ◽  
Author(s):  
Laurent Gantel ◽  
Amel Khiar ◽  
Benoit Miramond ◽  
Mohamed El Amine Benkhelifa ◽  
Lounis Kessal ◽  
...  

Author(s):  
Wan Ding ◽  
Qiang Ruan ◽  
Yan-an Yao

A novel five degrees of freedom deformable mobile robot composed of two spatial reconfigurable platforms and three revolute–prismatic–spherical kinematic chains acting in parallel to link the two platforms is proposed to realize large deformation capabilities and multiple locomotion modes. Each platform is an improved deployable single degrees of freedom three-plane-symmetric Bricard linkage. By taking advantage of locomotion collaborating among platforms and kinematic chains, the mobile robot can fold into stick-like shape and possess omnidirectional rolling and worm-like motions. The mechanism design, kinematics, and locomotion feasibility are the main focus. Through kinematics and gait planning, the robot is analyzed to have the capabilities of rolling and turning. Based on its deformation, the worm-like motion performs the ability to overcome narrow passages (such as pipes, holes, gaps, etc.) with large range of variable size. Dynamic simulations with detailed three-dimensional model are carried out to verify the gait planning and provide the variations of essential motion and dynamic parameters in each mode. An experimental robotic system with servo and pneumatic actuation systems is built, experiments are carried out to verify the validity of the theoretical analysis and the feasibility of the different locomotion functions, and its motion performances are compared and analyzed with collected data.


Sign in / Sign up

Export Citation Format

Share Document