Privacy-Preserving Identity Management as a Service

Author(s):  
David Nuñez ◽  
Isaac Agudo ◽  
Javier Lopez
Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 945 ◽  
Author(s):  
Rafael Torres Moreno ◽  
Jorge Bernal Bernabe ◽  
Jesús García Rodríguez ◽  
Tore Kasper Frederiksen ◽  
Michael Stausholm ◽  
...  

Privacy enhancing technologies (PETs) allow to achieve user’s transactions unlinkability across different online Service Providers. However, current PETs fail to guarantee unlinkability against the Identity Provider (IdP), which becomes a single point of failure in terms of privacy and security, and therefore, might impersonate its users. To address this issue, OLYMPUS EU project establishes an interoperable framework of technologies for a distributed privacy-preserving identity management based on cryptographic techniques that can be applied both to online and offline scenarios. Namely, distributed cryptographic techniques based on threshold cryptography are used to split up the role of the Identity Provider (IdP) into several authorities so that a single entity is not able to impersonate or track its users. The architecture leverages PET technologies, such as distributed threshold-based signatures and privacy attribute-based credentials (p-ABC), so that the signed tokens and the ABC credentials are managed in a distributed way by several IdPs. This paper describes the Olympus architecture, including its associated requirements, the main building blocks and processes, as well as the associated use cases. In addition, the paper shows how the Olympus oblivious architecture can be used to achieve privacy-preserving M2M offline transactions between IoT devices.


Author(s):  
Rafael Torres Moreno ◽  
Jesus Garcia Rodriguez ◽  
Cristina Timon Lopez ◽  
Jorge Bernal Bernabe ◽  
Antonio Skarmeta

2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jorge Bernal Bernabe ◽  
Jose L. Hernandez-Ramos ◽  
Antonio F. Skarmeta Gomez

Security and privacy concerns are becoming an important barrier for large scale adoption and deployment of the Internet of Things. To address this issue, the identity management system defined herein provides a novel holistic and privacy-preserving solution aiming to cope with heterogeneous scenarios that requires both traditional online access control and authentication, along with claim-based approach for M2M (machine to machine) interactions required in IoT. It combines a cryptographic approach for claim-based authentication using the Idemix anonymous credential system, together with classic IdM mechanisms by relying on the FIWARE IdM (Keyrock). This symbiosis endows the IdM system with advanced features such as privacy-preserving, minimal disclosure, zero-knowledge proofs, unlikability, confidentiality, pseudonymity, strong authentication, user consent, and offline M2M transactions. The IdM system has been specially tailored for the Internet of Things bearing in mind the management of both users’ and smart objects’ identity. Moreover, the IdM system has been successfully implemented, deployed, and tested in the scope of SocIoTal European research project.


2020 ◽  
Vol 102 ◽  
pp. 409-425 ◽  
Author(s):  
Jorge Bernal Bernabe ◽  
Martin David ◽  
Rafael Torres Moreno ◽  
Javier Presa Cordero ◽  
Sébastien Bahloul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document