Computing Minimum Dilation Spanning Trees in Geometric Graphs

Author(s):  
Aléx F. Brandt ◽  
Miguel F. A. de Gaiowski ◽  
Pedro J. de Rezende ◽  
Cid C. de Souza
Algorithmica ◽  
2017 ◽  
Vol 80 (11) ◽  
pp. 3177-3191 ◽  
Author(s):  
Ahmad Biniaz ◽  
Prosenjit Bose ◽  
David Eppstein ◽  
Anil Maheshwari ◽  
Pat Morin ◽  
...  

2017 ◽  
Vol 124 ◽  
pp. 35-41 ◽  
Author(s):  
Oswin Aichholzer ◽  
Thomas Hackl ◽  
Matias Korman ◽  
Marc van Kreveld ◽  
Maarten Löffler ◽  
...  

Author(s):  
Chaya Keller ◽  
Micha A. Perles ◽  
Eduardo Rivera-Campo ◽  
Virginia Urrutia-Galicia

2013 ◽  
Vol 46 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Eduardo Rivera-Campo ◽  
Virginia Urrutia-Galicia

2007 ◽  
Vol 1 (1) ◽  
pp. 265-275 ◽  
Author(s):  
Chiang Tzuu-Shuh ◽  
Chow Yunshyong
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 976
Author(s):  
R. Aguilar-Sánchez ◽  
J. Méndez-Bermúdez ◽  
José Rodríguez ◽  
José Sigarreta

We perform a detailed computational study of the recently introduced Sombor indices on random networks. Specifically, we apply Sombor indices on three models of random networks: Erdös-Rényi networks, random geometric graphs, and bipartite random networks. Within a statistical random matrix theory approach, we show that the average values of Sombor indices, normalized to the order of the network, scale with the average degree. Moreover, we discuss the application of average Sombor indices as complexity measures of random networks and, as a consequence, we show that selected normalized Sombor indices are highly correlated with the Shannon entropy of the eigenvectors of the adjacency matrix.


Patterns ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 100237
Author(s):  
Yifan Qian ◽  
Paul Expert ◽  
Pietro Panzarasa ◽  
Mauricio Barahona

Sign in / Sign up

Export Citation Format

Share Document