convolutional networks
Recently Published Documents





2022 ◽  
Vol 20 (3) ◽  
pp. 465-473
German Culqui-Culqui ◽  
Sandra Sanchez-Gordon ◽  
Myriam Hernandez-Alvarez

2022 ◽  
Vol 16 (4) ◽  
pp. 1-21
Honghui Xu ◽  
Zhipeng Cai ◽  
Wei Li

Multi-label image recognition has been an indispensable fundamental component for many real computer vision applications. However, a severe threat of privacy leakage in multi-label image recognition has been overlooked by existing studies. To fill this gap, two privacy-preserving models, Privacy-Preserving Multi-label Graph Convolutional Networks (P2-ML-GCN) and Robust P2-ML-GCN (RP2-ML-GCN), are developed in this article, where differential privacy mechanism is implemented on the model’s outputs so as to defend black-box attack and avoid large aggregated noise simultaneously. In particular, a regularization term is exploited in the loss function of RP2-ML-GCN to increase the model prediction accuracy and robustness. After that, a proper differential privacy mechanism is designed with the intention of decreasing the bias of loss function in P2-ML-GCN and increasing prediction accuracy. Besides, we analyze that a bounded global sensitivity can mitigate excessive noise’s side effect and obtain a performance improvement for multi-label image recognition in our models. Theoretical proof shows that our two models can guarantee differential privacy for model’s outputs, weights and input features while preserving model robustness. Finally, comprehensive experiments are conducted to validate the advantages of our proposed models, including the implementation of differential privacy on model’s outputs, the incorporation of regularization term into loss function, and the adoption of bounded global sensitivity for multi-label image recognition.

2022 ◽  
Vol 40 (2) ◽  
pp. 1-24
Minghao Zhao ◽  
Qilin Deng ◽  
Kai Wang ◽  
Runze Wu ◽  
Jianrong Tao ◽  

In recent years, advances in Graph Convolutional Networks (GCNs) have given new insights into the development of social recommendation. However, many existing GCN-based social recommendation methods often directly apply GCN to capture user-item and user-user interactions, which probably have two main limitations: (a) Due to the power-law property of the degree distribution, the vanilla GCN with static normalized adjacency matrix has limitations in learning node representations, especially for the long-tail nodes; (b) multi-typed social relationships between users that are ubiquitous in the real world are rarely considered. In this article, we propose a novel Bilateral Filtering Heterogeneous Attention Network (BFHAN), which improves long-tail node representations and leverages multi-typed social relationships between user nodes. First, we propose a novel graph convolutional filter for the user-item bipartite network and extend it to the user-user homogeneous network. Further, we theoretically analyze the correlation between the convergence values of different graph convolutional filters and node degrees after stacking multiple layers. Second, we model multi-relational social interactions between users as the multiplex network and further propose a multiplex attention network to capture distinctive inter-layer influences for user representations. Last but not least, the experimental results demonstrate that our proposed method outperforms several state-of-the-art GCN-based methods for social recommendation tasks.

2022 ◽  
Vol 9 (2) ◽  
pp. 205-234
Xin Liu ◽  
Mingyu Yan ◽  
Lei Deng ◽  
Guoqi Li ◽  
Xiaochun Ye ◽  

2022 ◽  
Vol 9 ◽  
Wei Jin ◽  
Wei Zhang ◽  
Jie Hu ◽  
Bin Weng ◽  
Tianqiang Huang ◽  

The high temperature forecast of the sub-season is a severe challenge. Currently, the residual structure has achieved good results in the field of computer vision attributed to the excellent feature extraction ability. However, it has not been introduced in the domain of sub-seasonal forecasting. Here, we develop multi-module daily deterministic and probabilistic forecast models by the residual structure and finally establish a complete set of sub-seasonal high temperature forecasting system in the eastern part of China. The experimental results indicate that our method is effective and outperforms the European hindcast results in all aspects: absolute error, anomaly correlation coefficient, and other indicators are optimized by 8–50%, and the equitable threat score is improved by up to 400%. We conclude that the residual network has a sharper insight into the high temperature in sub-seasonal high temperature forecasting compared to traditional methods and convolutional networks, thus enabling more effective early warnings of extreme high temperature weather.

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 114
Ramy Monir ◽  
Daniel Kostrzewa ◽  
Dariusz Mrozek

Singing voice detection or vocal detection is a classification task that determines whether there is a singing voice in a given audio segment. This process is a crucial preprocessing step that can be used to improve the performance of other tasks such as automatic lyrics alignment, singing melody transcription, singing voice separation, vocal melody extraction, and many more. This paper presents a survey on the techniques of singing voice detection with a deep focus on state-of-the-art algorithms such as convolutional LSTM and GRU-RNN. It illustrates a comparison between existing methods for singing voice detection, mainly based on the Jamendo and RWC datasets. Long-term recurrent convolutional networks have reached impressive results on public datasets. The main goal of the present paper is to investigate both classical and state-of-the-art approaches to singing voice detection.

2022 ◽  
Athul Kumar ◽  
Aarchi Agrawal ◽  
K S Ashin Shanly ◽  
Sudip Das ◽  
Nidhin Harilal

Sign in / Sign up

Export Citation Format

Share Document