Applications to Stochastic Differential Equations Driven by a Random Measure

Author(s):  
Nicolas Bouleau ◽  
Laurent Denis
2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Hui Yu ◽  
Minghui Song

The numerical methods in the current known literature require the stochastic differential equations (SDEs) driven by Poisson random measure satisfying the global Lipschitz condition and the linear growth condition. In this paper, Euler's method is introduced for SDEs driven by Poisson random measure with non-Lipschitz coefficients which cover more classes of such equations than before. The main aim is to investigate the convergence of the Euler method in probability to such equations with non-Lipschitz coefficients. Numerical example is given to demonstrate our results.


2020 ◽  
Vol 28 (4) ◽  
pp. 269-279
Author(s):  
Mohamed Marzougue ◽  
Mohamed El Otmani

AbstractIn the present paper, we consider reflected backward stochastic differential equations when the reflecting obstacle is not necessarily right-continuous in a general filtration that supports a one-dimensional Brownian motion and an independent Poisson random measure. We prove the existence and uniqueness of a predictable solution for such equations under the stochastic Lipschitz coefficient by using the predictable Mertens decomposition.


2016 ◽  
Vol 6 (3) ◽  
pp. 253-277 ◽  
Author(s):  
Yu Fu ◽  
Jie Yang ◽  
Weidong Zhao

AbstractBy introducing a new Gaussian process and a new compensated Poisson random measure, we propose an explicit prediction-correction scheme for solving decoupled forward backward stochastic differential equations with jumps (FBSDEJs). For this scheme, we first theoretically obtain a general error estimate result, which implies that the scheme is stable. Then using this result, we rigorously prove that the accuracy of the explicit scheme can be of second order. Finally, we carry out some numerical experiments to verify our theoretical results.


2019 ◽  
Vol 3 (2) ◽  
pp. 115-119
Author(s):  
Dang Kien Cuong ◽  
Duong Ton Dam ◽  
Duong Ton Thai Duong ◽  
Du Thuan Ngo

The jump-diffusion stochastic process is one of the most common forms in reality (such as wave propagation, noise propagation, turbulent flow, etc.), and researchers often refer to them in models of random processes such as Wiener process, Levy process, Ito-Hermite process, in research of G. D. Nunno, B. Oksendal, F. B. Hanson, etc. In our research, we have reviewed and solved three problems: (1) Jump-diffusion process (also known as the Ito-Levy process); (2) Solve the differential equation jump-diffusion random linear, in the case of one-dimensional; (3) Calculate the Wiener-Ito integral to the random Ito-Hermite process. The main method for dealing with the problems in our presentation is the Ito random-integrable mathematical operations for the continuous random process associated with the arbitrary differential jump by the Poisson random measure. This study aims to analyse the basic properties of jump-diffusion process that are solutions to the jump-diffusion linear stochastic differential equations: dX(t) = [a (t)X (t􀀀)+A(t)]dt + [b (t)X (t􀀀 ∫ )+B(t)]dW (t) + R0 [g (t; z)X (t􀀀)+G(t; z)] ¯N (dt;dz) with a set of stochastic continuous functions fa;b ;g ;A;B;Gg and assuming that the compensated Poisson process ¯N (t; z) is independent of the Wiener process W(t). Derived from the Ito-Hermite formulas for the Ito-Hermite process and for the Ito-Levy process class we presented the results for the differential and multiple stochastic integration for the Ito- Hermite process. We also provided a separation method to solve jump-diffusion linear differential equations.  


2012 ◽  
Author(s):  
Bo Jiang ◽  
Roger Brockett ◽  
Weibo Gong ◽  
Don Towsley

Sign in / Sign up

Export Citation Format

Share Document