markov switching
Recently Published Documents





2022 ◽  
Vol 415 ◽  
pp. 126694
Lifei Xie ◽  
Jun Cheng ◽  
Hailing Wang ◽  
Jiange Wang ◽  
Mengjie Hu ◽  

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Mohammadreza Mahmoudi ◽  
Hana Ghaneei

Purpose This study aims to analyze the impact of the crude oil market on the Toronto Stock Exchange Index (TSX). Design/methodology/approach The focus is on detecting nonlinear relationship based on monthly data from 1970 to 2021 using Markov-switching vector auto regression (VAR) model. Findings The results indicate that TSX return contains two regimes: positive return (Regime 1), when growth rate of stock index is positive; and negative return (Regime 2), when growth rate of stock index is negative. Moreover, Regime 1 is more volatile than Regime 2. The findings also show the crude oil market has a negative effect on the stock market in Regime 1, while it has a positive effect on the stock market in Regime 2. In addition, the authors can see this effect in Regime 1 more significantly in comparison to Regime 2. Furthermore, two-period lag of oil price decreases stock return in Regime 1, while it increases stock return in Regime 2. Originality/value This study aims to address the effect of oil market fluctuation on TSX index using Markov-switching approach and capture the nonlinearities between them. To the best of the author’s knowledge, this is the first study to assess the effect of the oil market on TSX in different regimes using Markov-switching VAR model. Because Canada is the sixth-largest producer and exporter of oil in the world as well as the TSX as the Canada’s main stock exchange is the tenth-largest stock exchange in the world by market capitalization, this paper’s framework to analyze a nonlinear relationship between oil market and the stock market of Canada helps stock market players like policymakers, institutional investors and private investors to get a better understanding of the real world.

Risks ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 18
Stephan Höcht ◽  
Aleksey Min ◽  
Jakub Wieczorek ◽  
Rudi Zagst

This study on explaining aggregated recovery rates (ARR) is based on the largest existing loss and recovery database for commercial loans provided by Global Credit Data, which includes defaults from 5 continents and over 120 countries. The dependence of monthly ARR from bank loans on various macroeconomic factors is examined and sources of their variability are stated. For the first time, an influence of stochastically estimated monthly growth of GDP USA and Europe is quantified. To extract monthly signals of GDP USA and Europe, dynamic factor models for panel data of different frequency information are employed. Then, the behavior of the ARR is investigated using several regression models with unshifted and shifted explanatory variables in time to improve their forecasting power by taking into account the economic situation after the default. An application of a Markov switching model shows that the distribution of the ARR differs between crisis and prosperity times. The best fit among the compared models is reached by the Markov switching model. Moreover, a significant influence of the estimated monthly growth of GDP in Europe is observed for both crises and prosperity times.

Energy ◽  
2022 ◽  
pp. 123089
Yiyang Chen ◽  
Rogemar Mamon ◽  
Fabio Spagnolo ◽  
Nicola Spagnolo

Sign in / Sign up

Export Citation Format

Share Document