diffusion process
Recently Published Documents


TOTAL DOCUMENTS

2644
(FIVE YEARS 463)

H-INDEX

59
(FIVE YEARS 10)

2022 ◽  
Vol 16 (1) ◽  
pp. 101239
Author(s):  
Jinqing Yang ◽  
Yi Bu ◽  
Wei Lu ◽  
Yong Huang ◽  
Jiming Hu ◽  
...  

Author(s):  
Yuk Leung

Let a particle start at some point in the unit interval I := [0, 1] and undergo Brownian motion in I until it hits one of the end points. At this instant the particle stays put for a finite holding time with an exponential distribution and then jumps back to a point inside I with a probability density μ0 or μ1 parametrized by the boundary point it was from. The process starts afresh. The same evolution repeats independently each time. Many probabilistic aspects of this diffusion process are investigated in the paper [10]. The authors in the cited paper call this process diffusion with holding and jumping (DHJ). Our simple aim in this paper is to analyze the eigenvalues of a nonlocal boundary problem arising from this process.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Jia-Wei Qiao ◽  
Wen-Qing Zhang ◽  
Feng-Zhe Cui ◽  
Hang Yin ◽  
Lin Feng ◽  
...  

AbstractInterlayer carrier transfer at heterointerfaces plays a critical role in light to electricity conversion using organic and nanostructured materials. However, how interlayer carrier extraction at these interfaces is poorly understood, especially in organic-inorganic heterogeneous systems. Here, we provide a direct strategy for manipulating the interlayer carrier diffusion process, transfer rate and extraction efficiency in tetracene/MoS2 type-II band alignment heterostructure by constructing the 2D–3D organic-inorganic (O-I) system. As a result, the prolonged diffusion length (12.32 nm), enhanced electron transfer rate (9.53 × 109 s−1) and improved carrier extraction efficiency (60.9%) are obtained in the 2D O-I structure which may be due to the more sufficient charge transfer (CT) state generation. In addition, we have demonstrated that the interlayer carrier transfer behavior complied with the diffusion mechanism based on the one-dimensional diffusion model. The diffusion coefficients have varied from 0.0027 to 0.0036 cm2 s−1 as the organic layer changes from 3D to 2D structures. Apart from the relationship between the carrier injection and diffusion process, temperature-dependent time-resolved spectra measurement is used to reveal the trap-related recombination that may limit the interlayer carrier extraction. The controllable interlayer carrier transfer behavior enables O-I heterojunction to be optimized for optoelectronic applications.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Francesco Corrias ◽  
Efisio Scano ◽  
Giorgia Sarais ◽  
Alberto Angioni

Swordfish is the most widespread billfish in the aquatic environment. The industrial processing of swordfish fillets involves salting, drying, and smoking steps. Salting techniques, dry or wet, are the most common method of fish preservation. This work evaluated salt diffusion in swordfish fillets after traditional dry salting and wet industrial injection salting methods. The data obtained from the dry salting studies highlighted that the salt diffusion process in swordfish meat was an unfavorable process depending on the contact time with the salt/meat. Moreover, irregularly shaped fillets negatively affected the salt migration in the different areas, leading to inhomogeneous and possibly unsafe final products. On the contrary, wet injection salting was suitable for processing swordfish fillets. As a result, the final products had a homogeneous salt concentration, maintained the organoleptic characteristics and health benefits for a long period, and achieved a longer shelf-life. Furthermore, the water activity (aw) values detected for the different processed fillets confirmed the physicochemical features of the final products and allow the classification of safe products. Moreover, injection salting is a quick process compatible with industrial production times.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Adélaïde Nicole Kengnou Telem ◽  
Cyrille Feudjio ◽  
Balamurali Ramakrishnan ◽  
Hilaire Bertrand Fotsin ◽  
Karthikeyan Rajagopal

In this paper, we propose a new and simple method for image encryption. It uses an external secret key of 128 bits long and an internal secret key. The novelties of the proposed encryption process are the methods used to extract an internal key to apply the zigzag process, affine transformation, and substitution-diffusion process. Initially, an original gray-scale image is converted into binary images. An internal secret key is extracted from binary images. The two keys are combined to compute the substitution-diffusion keys. The zigzag process is firstly applied on each binary image. Using an external key, every zigzag binary image is reflected or rotated and a new gray-scale image is reconstructed. The new image is divided into many nonoverlapping subblocks, and each subblock uses its own key to take out a substitution-diffusion process. We tested our algorithms on many biomedical and nonmedical images. It is seen from evaluation metrics that the proposed image encryption scheme provides good statistical and diffusion properties and can resist many kinds of attacks. It is an efficient and secure scheme for real-time encryption and transmission of biomedical images in telemedicine.


Author(s):  
Trifce Sandev ◽  
Viktor Domazetoski ◽  
Ljupco Kocarev ◽  
Ralf Metzler ◽  
Alexei Chechkin

Abstract We study a heterogeneous diffusion process with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyze the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like $t^{1⁄2}$ while the length scale ξ(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the heterogeneous diffusion process with diffusion length increasing like $t^{p⁄2}$ the length scale ξ(t) grows like $t^{p}$. The obtained results are verified by numerical solutions of the corresponding Langevin equation.


2022 ◽  
Vol 532 ◽  
pp. 110923
Author(s):  
Jia-Xing Gao ◽  
Zhen-Yi Wang ◽  
Michael Q. Zhang ◽  
Min-Ping Qian ◽  
Da-Quan Jiang

2022 ◽  
Vol 15 (1) ◽  
pp. 63-71
Author(s):  
Ahmed Nafidi ◽  
Oussama Rida ◽  
Meriem Bahij ◽  
Boujemaa Achchab

Sign in / Sign up

Export Citation Format

Share Document