Reset-Secure Identity-Based Identification Schemes Without Pairings

Author(s):  
Ji-Jian Chin ◽  
Hiroaki Anada ◽  
Syh-Yuan Tan
2008 ◽  
Vol 407 (1-3) ◽  
pp. 370-388 ◽  
Author(s):  
Guomin Yang ◽  
Jing Chen ◽  
Duncan S. Wong ◽  
Xiaotie Deng ◽  
Dongsheng Wang

2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Ji-Jian Chin ◽  
Syh-Yuan Tan ◽  
Swee-Huay Heng ◽  
Raphael C.-W. Phan

Security-mediated cryptography was first introduced by Boneh et al. in 2001. The main motivation behind security-mediated cryptography was the capability to allow instant revocation of a user’s secret key by necessitating the cooperation of a security mediator in any given transaction. Subsequently in 2003, Boneh et al. showed how to convert a RSA-based security-mediated encryption scheme from a traditional public key setting to an identity-based one, where certificates would no longer be required. Following these two pioneering papers, other cryptographic primitives that utilize a security-mediated approach began to surface. However, the security-mediated identity-based identification scheme (SM-IBI) was not introduced until Chin et al. in 2013 with a scheme built on bilinear pairings. In this paper, we improve on the efficiency results for SM-IBI schemes by proposing two schemes that are pairing-free and are based on well-studied complexity assumptions: the RSA and discrete logarithm assumptions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fei Tang ◽  
Jiali Bao ◽  
Yonghong Huang ◽  
Dong Huang ◽  
Fuqun Wang

Identification schemes support that a prover who holding a secret key to prove itself to any verifier who holding the corresponding public key. In traditional identity-based identification schemes, there is a key generation center to generate all users’ secret keys. This means that the key generation center knows all users’ secret key, which brings the key escrow problem. To resolve this problem, in this work, we define the model of identity-based identification without a trusted party. Then, we propose a multi-authority identity-based identification scheme based on bilinear pairing. Furthermore, we prove the security of the proposed scheme in the random oracle model against impersonation under passive and concurrent attacks. Finally, we give an application of the proposed identity-based identification scheme to blockchain.


Author(s):  
Guomin Yang ◽  
Jing Chen ◽  
Duncan S. Wong ◽  
Xiaotie Deng ◽  
Dongsheng Wang

Informatica ◽  
2017 ◽  
Vol 28 (1) ◽  
pp. 193-214 ◽  
Author(s):  
Tung-Tso Tsai ◽  
Sen-Shan Huang ◽  
Yuh-Min Tseng

Author(s):  
Jae Hong SEO ◽  
Tetsutaro KOBAYASHI ◽  
Miyako OHKUBO ◽  
Koutarou SUZUKI

Sign in / Sign up

Export Citation Format

Share Document