Gender Recognition from Face Images Using a Fusion of SVM Classifiers

Author(s):  
George Azzopardi ◽  
Antonio Greco ◽  
Mario Vento
Author(s):  
Olasimbo Ayodeji Arigbabu ◽  
Sharifah Mumtazah Syed Ahmad ◽  
Wan Azizun Wan Adnan ◽  
Saif Mahmood

Gender recognition from unconstrained face images is a challenging task due to the high degree of misalignment, pose, expression, and illumination variation. In previous works, the recognition of gender from unconstrained face images is approached by utilizing image alignment, exploiting multiple samples per individual to improve the learning ability of the classifier, or learning gender based on prior knowledge about pose and demographic distributions of the dataset. However, image alignment increases the complexity and time of computation, while the use of multiple samples or having prior knowledge about data distribution is unrealistic in practical applications. This paper presents an approach for gender recognition from unconstrained face images. Our technique exploits the robustness of local feature descriptor to photometric variations to extract the shape description of the 2D face image using a single sample image per individual. The results obtained from experiments on Labeled Faces in the Wild (LFW) dataset describe the effectiveness of the proposed method. The essence of this study is to investigate the most suitable functions and parameter settings for recognizing gender from unconstrained face images.  


Author(s):  
George Azzopardi ◽  
Pasquale Foggia ◽  
Antonio Greco ◽  
Alessia Saggese ◽  
Mario Vento

Author(s):  
Antonio Greco ◽  
Alessia Saggese ◽  
Mario Vento ◽  
Vincenzo Vigilante

AbstractIn the era of deep learning, the methods for gender recognition from face images achieve remarkable performance over most of the standard datasets. However, the common experimental analyses do not take into account that the face images given as input to the neural networks are often affected by strong corruptions not always represented in standard datasets. In this paper, we propose an experimental framework for gender recognition “in the wild”. We produce a corrupted version of the popular LFW+ and GENDER-FERET datasets, that we call LFW+C and GENDER-FERET-C, and evaluate the accuracy of nine different network architectures in presence of specific, suitably designed, corruptions; in addition, we perform an experiment on the MIVIA-Gender dataset, recorded in real environments, to analyze the effects of mixed image corruptions happening in the wild. The experimental analysis demonstrates that the robustness of the considered methods can be further improved, since all of them are affected by a performance drop on images collected in the wild or manually corrupted. Starting from the experimental results, we are able to provide useful insights for choosing the best currently available architecture in specific real conditions. The proposed experimental framework, whose code is publicly available, is general enough to be applicable also on different datasets; thus, it can act as a forerunner for future investigations.


Sign in / Sign up

Export Citation Format

Share Document