A Better Trajectory Shape Descriptor for Human Activity Recognition

Author(s):  
Pejman Habashi ◽  
Boubakeur Boufama ◽  
Imran Shafiq Ahmad
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Samy Sadek ◽  
Ayoub Al-Hamadi ◽  
Bernd Michaelis ◽  
Usama Sayed

Despite their high stability and compactness, chord-length shape features have received relatively little attention in the human action recognition literature. In this paper, we present a new approach for human activity recognition, based on chord-length shape features. The most interesting contribution of this paper is twofold. We first show how a compact, computationally efficient shape descriptor; the chord-length shape features are constructed using 1-D chord-length functions. Second, we unfold how to use fuzzy membership functions to partition action snippets into a number of temporal states. On two benchmark action datasets (KTH and WEIZMANN), the approach yields promising results that compare favorably with those previously reported in the literature, while maintaining real-time performance.


Author(s):  
Lidia Bajenaru ◽  
Ciprian Dobre ◽  
Radu-Ioan Ciobanu ◽  
Georgiana Dedu ◽  
Silviu-George Pantelimon ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1715
Author(s):  
Michele Alessandrini ◽  
Giorgio Biagetti ◽  
Paolo Crippa ◽  
Laura Falaschetti ◽  
Claudio Turchetti

Photoplethysmography (PPG) is a common and practical technique to detect human activity and other physiological parameters and is commonly implemented in wearable devices. However, the PPG signal is often severely corrupted by motion artifacts. The aim of this paper is to address the human activity recognition (HAR) task directly on the device, implementing a recurrent neural network (RNN) in a low cost, low power microcontroller, ensuring the required performance in terms of accuracy and low complexity. To reach this goal, (i) we first develop an RNN, which integrates PPG and tri-axial accelerometer data, where these data can be used to compensate motion artifacts in PPG in order to accurately detect human activity; (ii) then, we port the RNN to an embedded device, Cloud-JAM L4, based on an STM32 microcontroller, optimizing it to maintain an accuracy of over 95% while requiring modest computational power and memory resources. The experimental results show that such a system can be effectively implemented on a constrained-resource system, allowing the design of a fully autonomous wearable embedded system for human activity recognition and logging.


Sign in / Sign up

Export Citation Format

Share Document