scholarly journals Diagnosis of Alzheimer Disease Through an Artificial Neural Network Based System

Author(s):  
Ivo Ramalhosa ◽  
Pedro Mateus ◽  
Victor Alves ◽  
Henrique Vicente ◽  
Filipa Ferraz ◽  
...  
2007 ◽  
Vol 1 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Jair Minoro Abe ◽  
Helder Frederico da Silva Lopes ◽  
Renato Anghinah

Abstract EEG visual analysis has proved useful in aiding AD diagnosis, being indicated in some clinical protocols. However, such analysis is subject to the inherent imprecision of equipment, patient movements, electric registers, and individual variability of physician visual analysis. Objectives: To employ the Paraconsistent Artificial Neural Network to ascertain how to determine the degree of certainty of probable dementia diagnosis. Methods: Ten EEG records from patients with probable Alzheimer disease and ten controls were obtained during the awake state at rest. An EEG background between 8 Hz and 12 Hz was considered the normal pattern for patients, allowing a variance of 0.5 Hz. Results: The PANN was capable of accurately recognizing waves belonging to Alpha band with favorable evidence of 0.30 and contrary evidence of 0.19, while for waves not belonging to the Alpha pattern, an average favorable evidence of 0.19 and contrary evidence of 0.32 was obtained, indicating that PANN was efficient in recognizing Alpha waves in 80% of the cases evaluated in this study. Artificial Neural Networks - ANN - are well suited to tackle problems such as prediction and pattern recognition. The aim of this work was to recognize predetermined EEG patterns by using a new class of ANN, namely the Paraconsistent Artificial Neural Network - PANN, which is capable of handling uncertain, inconsistent and paracomplete information. An architecture is presented to serve as an auxiliary method in diagnosing Alzheimer disease. Conclusions: We believe the results show PANN to be a promising tool to handle EEG analysis, bearing in mind two considerations: the growing interest of experts in visual analysis of EEG, and the ability of PANN to deal directly with imprecise, inconsistent, and paracomplete data, thereby providing a valuable quantitative analysis.


Author(s):  
Dariusz Świetlik ◽  
Jacek Białowąs

The aim of this study was to demonstrate the usefulness of artificial neural networks in Alzheimer disease diagnosis (AD) using data of brain single photon emission computed tomography (SPECT). The results were compared with discriminant analysis. The study population consisted of 132 clinically diagnosed patients. There were 72 subjects with AD and 60 belonging to the normal control group. The artificial neural network used 36 numerical values being the count numbers obtained for each area of brain SPECT. These numbers determined the set of input data for the artificial neural network. The sensitivity of Alzheimer disease diagnosis detection by artificial neural network and discriminant analysis were 93.8% and 86.1%, respectively, and the corresponding specificity was 100% and 95%. We also used receiver operating characteristic curve (ROC) analysis and areas under receiver operating characteristics curves were correspondingly 0.97 (p < 0.0001) for the artificial neural networks (ANN) and 0.96 (p < 0.0001) for discriminant analysis. In conclusion, artificial neural networks and conventional statistics methods (discriminant analysis) are a useful tool in Alzheimer disease diagnosis.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

1998 ◽  
Vol 49 (7) ◽  
pp. 717-722 ◽  
Author(s):  
M C M de Carvalho ◽  
M S Dougherty ◽  
A S Fowkes ◽  
M R Wardman

Sign in / Sign up

Export Citation Format

Share Document