Privacy Preserving Data Mining on Big Data Computing Platform: Trends and Future

Author(s):  
Gao Zhiqiang ◽  
Zhang Longjun
2014 ◽  
Vol 10 (1) ◽  
pp. 55-76 ◽  
Author(s):  
Mohammad Reza Keyvanpour ◽  
Somayyeh Seifi Moradi

In this study, a new model is provided for customized privacy in privacy preserving data mining in which the data owners define different levels for privacy for different features. Additionally, in order to improve perturbation methods, a method combined of singular value decomposition (SVD) and feature selection methods is defined so as to benefit from the advantages of both domains. Also, to assess the amount of distortion created by the proposed perturbation method, new distortion criteria are defined in which the amount of created distortion in the process of feature selection is considered based on the value of privacy in each feature. Different tests and results analysis show that offered method based on this model compared to previous approaches, caused the improved privacy, accuracy of mining results and efficiency of privacy preserving data mining systems.


Author(s):  
Luiz Angelo Steffenel ◽  
Manuele Kirsch Pinheiro ◽  
Lucas Vaz Peres ◽  
Damaris Kirsch Pinheiro

The exponential dissemination of proximity computing devices (smartphones, tablets, nanocomputers, etc.) raises important questions on how to transmit, store and analyze data in networks integrating those devices. New approaches like edge computing aim at delegating part of the work to devices in the “edge” of the network. In this article, the focus is on the use of pervasive grids to implement edge computing and leverage such challenges, especially the strategies to ensure data proximity and context awareness, two factors that impact the performance of big data analyses in distributed systems. This article discusses the limitations of traditional big data computing platforms and introduces the principles and challenges to implement edge computing over pervasive grids. Finally, using CloudFIT, a distributed computing platform, the authors illustrate the deployment of a real geophysical application on a pervasive network.


Sign in / Sign up

Export Citation Format

Share Document