Normal Subgroup Structure of Totally Disconnected Locally Compact Groups

Author(s):  
Colin D. Reid
2019 ◽  
Vol 31 (3) ◽  
pp. 685-701 ◽  
Author(s):  
Colin D. Reid ◽  
Phillip R. Wesolek

Abstract Let {\phi:G\rightarrow H} be a group homomorphism such that H is a totally disconnected locally compact (t.d.l.c.) group and the image of ϕ is dense. We show that all such homomorphisms arise as completions of G with respect to uniformities of a particular kind. Moreover, H is determined up to a compact normal subgroup by the pair {(G,\phi^{-1}(L))} , where L is a compact open subgroup of H. These results generalize the well-known properties of profinite completions to the locally compact setting.


Author(s):  
R. W. Bagley ◽  
T. S. Wu ◽  
J. S. Yang

AbstractIf G is a locally compact group such thatG/G0contains a uniform compactly generated nilpotent subgroup, thenGhas a maximal compact normal subgroupKsuch thatG/Gis a Lie group. A topological groupGis an N-group if, for each neighbourhoodUof the identity and each compact setC⊂G, there is a neighbourhoodVof the identity such thatfor eachg∈G. Several results on N-groups are obtained and it is shown that a related weaker condition is equivalent to local finiteness for certain totally disconnected groups.


2016 ◽  
Vol 37 (7) ◽  
pp. 2163-2186 ◽  
Author(s):  
ANNA GIORDANO BRUNO ◽  
SIMONE VIRILI

Let $G$ be a topological group, let $\unicode[STIX]{x1D719}$ be a continuous endomorphism of $G$ and let $H$ be a closed $\unicode[STIX]{x1D719}$-invariant subgroup of $G$. We study whether the topological entropy is an additive invariant, that is, $$\begin{eqnarray}h_{\text{top}}(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719}\restriction _{H})+h_{\text{top}}(\bar{\unicode[STIX]{x1D719}}),\end{eqnarray}$$ where $\bar{\unicode[STIX]{x1D719}}:G/H\rightarrow G/H$ is the map induced by $\unicode[STIX]{x1D719}$. We concentrate on the case when $G$ is totally disconnected locally compact and $H$ is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever $\unicode[STIX]{x1D719}H=H$ and $\ker (\unicode[STIX]{x1D719})\leq H$. As an application, we give a dynamical interpretation of the scale $s(\unicode[STIX]{x1D719})$ by showing that $\log s(\unicode[STIX]{x1D719})$ is the topological entropy of a suitable map induced by $\unicode[STIX]{x1D719}$. Finally, we give necessary and sufficient conditions for the equality $\log s(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719})$ to hold.


2021 ◽  
pp. 1-27
Author(s):  
S. Arora ◽  
I. Castellano ◽  
G. Corob Cook ◽  
E. Martínez-Pedroza

This paper is part of the program of studying large-scale geometric properties of totally disconnected locally compact groups, TDLC-groups, by analogy with the theory for discrete groups. We provide a characterization of hyperbolic TDLC-groups, in terms of homological isoperimetric inequalities. This characterization is used to prove the main result of this paper: for hyperbolic TDLC-groups with rational discrete cohomological dimension [Formula: see text], hyperbolicity is inherited by compactly presented closed subgroups. As a consequence, every compactly presented closed subgroup of the automorphism group [Formula: see text] of a negatively curved locally finite [Formula: see text]-dimensional building [Formula: see text] is a hyperbolic TDLC-group, whenever [Formula: see text] acts with finitely many orbits on [Formula: see text]. Examples where this result applies include hyperbolic Bourdon’s buildings. We revisit the construction of small cancellation quotients of amalgamated free products, and verify that it provides examples of hyperbolic TDLC-groups of rational discrete cohomological dimension [Formula: see text] when applied to amalgamated products of profinite groups over open subgroups. We raise the question of whether our main result can be extended to locally compact hyperbolic groups if rational discrete cohomological dimension is replaced by asymptotic dimension. We prove that this is the case for discrete groups and sketch an argument for TDLC-groups.


2018 ◽  
Vol 107 (1) ◽  
pp. 26-52 ◽  
Author(s):  
YVES CORNULIER

Wreath products of nondiscrete locally compact groups are usually not locally compact groups, nor even topological groups. As a substitute introduce a natural extension of the wreath product construction to the setting of locally compact groups. Applying this construction, we disprove a conjecture of Trofimov, constructing compactly generated locally compact groups of intermediate growth without any open compact normal subgroup.


Sign in / Sign up

Export Citation Format

Share Document