scholarly journals Topological entropy in totally disconnected locally compact groups

2016 ◽  
Vol 37 (7) ◽  
pp. 2163-2186 ◽  
Author(s):  
ANNA GIORDANO BRUNO ◽  
SIMONE VIRILI

Let $G$ be a topological group, let $\unicode[STIX]{x1D719}$ be a continuous endomorphism of $G$ and let $H$ be a closed $\unicode[STIX]{x1D719}$-invariant subgroup of $G$. We study whether the topological entropy is an additive invariant, that is, $$\begin{eqnarray}h_{\text{top}}(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719}\restriction _{H})+h_{\text{top}}(\bar{\unicode[STIX]{x1D719}}),\end{eqnarray}$$ where $\bar{\unicode[STIX]{x1D719}}:G/H\rightarrow G/H$ is the map induced by $\unicode[STIX]{x1D719}$. We concentrate on the case when $G$ is totally disconnected locally compact and $H$ is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever $\unicode[STIX]{x1D719}H=H$ and $\ker (\unicode[STIX]{x1D719})\leq H$. As an application, we give a dynamical interpretation of the scale $s(\unicode[STIX]{x1D719})$ by showing that $\log s(\unicode[STIX]{x1D719})$ is the topological entropy of a suitable map induced by $\unicode[STIX]{x1D719}$. Finally, we give necessary and sufficient conditions for the equality $\log s(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719})$ to hold.

2012 ◽  
Vol 86 (2) ◽  
pp. 315-321
Author(s):  
MOHAMMAD JAVAD MEHDIPOUR

AbstractIn this paper we give a necessary and sufficient condition under which the answer to the open problem raised by Ghahramani and Lau (‘Multipliers and modulus on Banach algebras related to locally compact groups’, J. Funct. Anal. 150 (1997), 478–497) is positive.


2019 ◽  
Vol 31 (3) ◽  
pp. 685-701 ◽  
Author(s):  
Colin D. Reid ◽  
Phillip R. Wesolek

Abstract Let {\phi:G\rightarrow H} be a group homomorphism such that H is a totally disconnected locally compact (t.d.l.c.) group and the image of ϕ is dense. We show that all such homomorphisms arise as completions of G with respect to uniformities of a particular kind. Moreover, H is determined up to a compact normal subgroup by the pair {(G,\phi^{-1}(L))} , where L is a compact open subgroup of H. These results generalize the well-known properties of profinite completions to the locally compact setting.


2021 ◽  
pp. 1-27
Author(s):  
S. Arora ◽  
I. Castellano ◽  
G. Corob Cook ◽  
E. Martínez-Pedroza

This paper is part of the program of studying large-scale geometric properties of totally disconnected locally compact groups, TDLC-groups, by analogy with the theory for discrete groups. We provide a characterization of hyperbolic TDLC-groups, in terms of homological isoperimetric inequalities. This characterization is used to prove the main result of this paper: for hyperbolic TDLC-groups with rational discrete cohomological dimension [Formula: see text], hyperbolicity is inherited by compactly presented closed subgroups. As a consequence, every compactly presented closed subgroup of the automorphism group [Formula: see text] of a negatively curved locally finite [Formula: see text]-dimensional building [Formula: see text] is a hyperbolic TDLC-group, whenever [Formula: see text] acts with finitely many orbits on [Formula: see text]. Examples where this result applies include hyperbolic Bourdon’s buildings. We revisit the construction of small cancellation quotients of amalgamated free products, and verify that it provides examples of hyperbolic TDLC-groups of rational discrete cohomological dimension [Formula: see text] when applied to amalgamated products of profinite groups over open subgroups. We raise the question of whether our main result can be extended to locally compact hyperbolic groups if rational discrete cohomological dimension is replaced by asymptotic dimension. We prove that this is the case for discrete groups and sketch an argument for TDLC-groups.


2017 ◽  
Vol 5 ◽  
Author(s):  
PIERRE-EMMANUEL CAPRACE ◽  
COLIN D. REID ◽  
GEORGE A. WILLIS

We use the structure lattice, introduced in Part I, to undertake a systematic study of the class $\mathscr{S}$ consisting of compactly generated, topologically simple, totally disconnected locally compact groups that are nondiscrete. Given $G\in \mathscr{S}$, we show that compact open subgroups of $G$ involve finitely many isomorphism types of composition factors, and do not have any soluble normal subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and local decomposition lattice of $G$ are Boolean algebras. We show that the $G$-action on the Stone space of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those results, we obtain partial answers to the following key problems: Are all groups in $\mathscr{S}$ abstractly simple? Can a group in $\mathscr{S}$ be amenable? Can a group in $\mathscr{S}$ be such that the contraction groups of all of its elements are trivial?


Sign in / Sign up

Export Citation Format

Share Document