wreath product
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 28 (2) ◽  
Author(s):  
A. Esterov ◽  
L. Lang

AbstractWe introduce a new technique to prove connectivity of subsets of covering spaces (so called inductive connectivity), and apply it to Galois theory of problems of enumerative geometry. As a model example, consider the problem of permuting the roots of a complex polynomial $$f(x) = c_0 + c_1 x^{d_1} + \cdots + c_k x^{d_k}$$ f ( x ) = c 0 + c 1 x d 1 + ⋯ + c k x d k by varying its coefficients. If the GCD of the exponents is d, then the polynomial admits the change of variable $$y=x^d$$ y = x d , and its roots split into necklaces of length d. At best we can expect to permute these necklaces, i.e. the Galois group of f equals the wreath product of the symmetric group over $$d_k/d$$ d k / d elements and $${\mathbb {Z}}/d{\mathbb {Z}}$$ Z / d Z . We study the multidimensional generalization of this equality: the Galois group of a general system of polynomial equations equals the expected wreath product for a large class of systems, but in general this expected equality fails, making the problem of describing such Galois groups unexpectedly rich.


10.53733/108 ◽  
2021 ◽  
Vol 51 ◽  
pp. 85-93
Author(s):  
James East ◽  
James Mitchell

We show that the wreath product of two finite symmetric or alternating groups is 2-generated.


Author(s):  
Anna Erschler ◽  
Tianyi Zheng

AbstractWe prove the law of large numbers for the drift of random walks on the two-dimensional lamplighter group, under the assumption that the random walk has finite $$(2+\epsilon )$$ ( 2 + ϵ ) -moment. This result is in contrast with classical examples of abelian groups, where the displacement after n steps, normalised by its mean, does not concentrate, and the limiting distribution of the normalised n-step displacement admits a density whose support is $$[0,\infty )$$ [ 0 , ∞ ) . We study further examples of groups, some with random walks satisfying LLN for drift and other examples where such concentration phenomenon does not hold, and study relation of this property with asymptotic geometry of groups.


Author(s):  
Mariapia Moscatiello ◽  
Colva M. Roney-Dougal

AbstractLet G be a permutation group, acting on a set $$\varOmega $$ Ω of size n. A subset $${\mathcal {B}}$$ B of $$\varOmega $$ Ω is a base for G if the pointwise stabilizer $$G_{({\mathcal {B}})}$$ G ( B ) is trivial. Let b(G) be the minimal size of a base for G. A subgroup G of $$\mathrm {Sym}(n)$$ Sym ( n ) is large base if there exist integers m and $$r \ge 1$$ r ≥ 1 such that $${{\,\mathrm{Alt}\,}}(m)^r \unlhd G \le {{\,\mathrm{Sym}\,}}(m)\wr {{\,\mathrm{Sym}\,}}(r)$$ Alt ( m ) r ⊴ G ≤ Sym ( m ) ≀ Sym ( r ) , where the action of $${{\,\mathrm{Sym}\,}}(m)$$ Sym ( m ) is on k-element subsets of $$\{1,\dots ,m\}$$ { 1 , ⋯ , m } and the wreath product acts with product action. In this paper we prove that if G is primitive and not large base, then either G is the Mathieu group $$\mathrm {M}_{24}$$ M 24 in its natural action on 24 points, or $$b(G)\le \lceil \log n\rceil +1$$ b ( G ) ≤ ⌈ log n ⌉ + 1 . Furthermore, we show that there are infinitely many primitive groups G that are not large base for which $$b(G) > \log n + 1$$ b ( G ) > log n + 1 , so our bound is optimal.


2021 ◽  
Vol 13 (1) ◽  
pp. 142-148
Author(s):  
O.G. Ganyushkin ◽  
O.O. Desiateryk

In this paper we consider variants of the power set and the lattice of subspaces and study automorphism groups of these variants. We obtain irreducible generating sets for variants of subsets of a finite set lattice and subspaces of a finite vector space lattice. We prove that automorphism group of the variant of subsets of a finite set lattice is a wreath product of two symmetric permutation groups such as first of this groups acts on subsets. The automorphism group of the variant of the subspace of a finite vector space lattice is a natural generalization of the wreath product. The first multiplier of this generalized wreath product is the automorphism group of subspaces lattice and the second is defined by the certain set of symmetric groups.


2021 ◽  
Vol 1947 (1) ◽  
pp. 012033
Author(s):  
K. Thanga Kanniga ◽  
V. Maheswari ◽  
K. Palani

Author(s):  
DMITRY BERDINSKY ◽  
MURRAY ELDER ◽  
JENNIFER TABACK

Abstract We extend work of Berdinsky and Khoussainov [‘Cayley automatic representations of wreath products’, International Journal of Foundations of Computer Science27(2) (2016), 147–159] to show that being Cayley automatic is closed under taking the restricted wreath product with a virtually infinite cyclic group. This adds to the list of known examples of Cayley automatic groups.


Author(s):  
Mansour Hashemi ◽  
Mina Pirzadeh ◽  
Shoja Ali Gorjian

2021 ◽  
Vol 31 (2) ◽  
pp. 302-322
Author(s):  
O. Tout ◽  

We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.


2020 ◽  
Vol 343 (12) ◽  
pp. 112109
Author(s):  
Lily Li Liu ◽  
Mengmeng Dong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document