A Fragile Watermarking Scheme of Anti-deleting Features for 2D Vector Map

Author(s):  
Guoyin Zhang ◽  
Qingan Da ◽  
Liguo Zhang ◽  
Jianguo Sun ◽  
Qilong Han ◽  
...  
2015 ◽  
Vol 7 (3) ◽  
pp. 60-80 ◽  
Author(s):  
Nana Wang ◽  
Xiangjun Zhao ◽  
Han Zhang

In this paper, the authors propose a block-based reversible watermarking method for 2D vector map authentication. In the scheme, they divide the features of a vector map into different categories of blocks, calculate an authentication watermark for each block, and embed the watermarks of different blocks using a reversible watermarking method based on virtual coordinates and a fragile watermarking algorithm based on concentric circles. While the block division ensures superior accuracy of tamper localization, the two watermarking methods provide recovery of the original content. Experimental results show that the proposed scheme has good invisibility, reversibility and computational complexity, and can accurately locate malicious attacks such as vertex modification/addition/deletion and feature modification/addition/deletion.


2017 ◽  
Vol 10 (4) ◽  
pp. 471-481 ◽  
Author(s):  
Haowen Yan ◽  
Liming Zhang ◽  
Weifang Yang

2019 ◽  
Vol 9 (4) ◽  
pp. 642 ◽  
Author(s):  
Xu Xi ◽  
Xinchang Zhang ◽  
Weidong Liang ◽  
Qinchuan Xin ◽  
Pengcheng Zhang

Digital watermarking is important for the copyright protection of electronic data, but embedding watermarks into vector maps could easily lead to changes in map precision. Zero-watermarking, a method that does not embed watermarks into maps, could avoid altering vector maps but often lack of robustness. This study proposes a dual zero-watermarking scheme that improves watermark robustness for two-dimensional (2D) vector maps. The proposed scheme first extracts the feature vertices and non-feature vertices of the vector map with the Douglas-Peucker algorithm and subsequently constructs the Delaunay Triangulation Mesh (DTM) to form a topological feature sequence of feature vertices as well as the Singular Value Decomposition (SVD) matrix to form intrinsic feature sequence of non-feature vertices. Next, zero-watermarks are obtained by executing exclusive disjunction (XOR) with the encrypted watermark image under the Arnold scramble algorithm. The experimental results show that the scheme that synthesizes both the feature and non-feature information improves the watermark capacity. Making use of complementary information between feature and non-feature vertices considerably improves the overall robustness of the watermarking scheme. The proposed dual zero-watermarking scheme combines the advantages of individual watermarking schemes and is robust against such attacks as geometric attacks, vertex attacks and object attacks.


Sign in / Sign up

Export Citation Format

Share Document