Проведен обзор методов и алгоритмов формирования рабочего созвездия навигационных космических аппаратов при решении задач определения местоположения потребителя ГНСС. Появление новых орбитальных группировок и развитие прошлых поколений глобальных навигационных спутниковых систем (ГНСС) способствует увеличению как количества навигационных аппаратов, так и навигационных радиосигналов, излучаемых каждым спутником, в связи с чем решение проблемы выбора навигационных аппаратов является важной составляющей навигационной задачи. Рассмотрены исследования, посвященные типовым алгоритмам формирования рабочего созвездия, а также современным алгоритмам, построенным с привлечением элементов теории машинного обучения. Представлена связь ошибок определения координат потребителя, погрешностей определения псевдодальностей и пространственного расположения навигационных аппаратов и потребителя. Среди рассмотренных алгоритмов выделены три направления исследований: 1) нацеленных на поиск оптимального рабочего созвездия, обеспечивающего минимальную оценку выбранного геометрического фактора снижения точности; 2) нацеленных на поиск квазиоптимальных рабочих созвездий с целью уменьшения вычислительной сложности алгоритма ввиду большого количества видимых спутников; 3) позволяющих одновременно работать в совмещенном режиме по нескольким ГНСС. Приводятся особенности реализаций алгоритмов, их преимущества и недостатки. В заключении приведены рекомендации по изменению подхода к оценке эффективности алгоритмов, а также делается вывод о необходимости учета как геометрического расположения космических аппаратов, так и погрешности определения псевдодальности при выборе космического аппарата в рабочее созвездие
The article provides an overview of methods and algorithms for forming a satellite constellation as a part of the navigation problem for the positioning, navigation and timing service. The emergence of new orbital constellations and the development of past GNSS generations increase both the number of navigation satellites and radio signals emitted by every satellite, and therefore the proper solution of satellite selection problem is an important component of the positioning, navigation and timing service. We considered the works devoted to typical algorithms of working constellation formation, as well as to modern algorithms built with the use of machine-learning theory elements. We present the relationship between user coordinates errors, pseudorange errors and the influence of spatial location of satellites and the user. Three directions of researche among reviewed algorithms are outlined: 1) finding the best satellite constellation that provides the minimum geometric dilution of precision; 2) finding quasi-optimal satellite constellation in order to reduce the computational complexity of the algorithm due to the large number of visible satellites; 3) possibility to work in a combined mode using radio signals of multiple GNSS simultaneously. The article presents the features of the algorithms' implementations, their advantages and disadvantages. The conclusion presents the recommendations to change the approach to assessing the performance of the algorithms, and concludes that it is necessary to take into account both the satellite geometric configuration, and pseudorange errors when satellite constellation is being formed