Tenth Order Mock Theta Functions: Part IV

2018 ◽  
pp. 229-248
Author(s):  
George E. Andrews ◽  
Bruce C. Berndt
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


2009 ◽  
Vol 24 (4) ◽  
pp. 629-640
Author(s):  
Maheshwar Pathak ◽  
Pankaj Srivastava

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Harman Kaur ◽  
Meenakshi Rana

<p style='text-indent:20px;'>Ramanujan introduced sixth order mock theta functions <inline-formula><tex-math id="M3">\begin{document}$ \lambda(q) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \rho(q) $\end{document}</tex-math></inline-formula> defined as:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \lambda(q) &amp; = \sum\limits_{n = 0}^{\infty}\frac{(-1)^n q^n (q;q^2)_n}{(-q;q)_n},\\ \rho(q) &amp; = \sum\limits_{n = 0}^{\infty}\frac{ q^{n(n+1)/2} (-q;q)_n}{(q;q^2)_{n+1}}, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>listed in the Lost Notebook. In this paper, we present some Ramanujan-like congruences and also find their infinite families modulo 12 for the coefficients of mock theta functions mentioned above.</p>


2016 ◽  
Vol 300 ◽  
pp. 17-70 ◽  
Author(s):  
Victor G. Kac ◽  
Minoru Wakimoto

1998 ◽  
Vol 50 (2) ◽  
pp. 412-425 ◽  
Author(s):  
Richard J. McIntosh

AbstractFor the q–series we construct a companion q–series such that the asymptotic expansions of their logarithms as q → 1– differ only in the dominant few terms. The asymptotic expansion of their quotient then has a simple closed form; this gives rise to a new q–hypergeometric identity. We give an asymptotic expansion of a general class of q–series containing some of Ramanujan's mock theta functions and Selberg's identities.


2019 ◽  
Vol 16 (02) ◽  
pp. 423-446 ◽  
Author(s):  
Nayandeep Deka Baruah ◽  
Nilufar Mana Begum

Recently, Andrews, Dixit and Yee introduced partition functions associated with Ramanujan/Watson third-order mock theta functions [Formula: see text] and [Formula: see text]. In this paper, we find several new exact generating functions for those partition functions as well as the associated smallest part functions and deduce several new congruences modulo powers of 5.


Sign in / Sign up

Export Citation Format

Share Document