asymptotic expansion
Recently Published Documents


TOTAL DOCUMENTS

1949
(FIVE YEARS 224)

H-INDEX

50
(FIVE YEARS 4)

2022 ◽  
pp. 1-31
Author(s):  
Mouez Dimassi ◽  
Setsuro Fujiié

We study Schrödinger operators H ( h ) = − h 2 Δ + V ( x ) acting in L 2 ( R n ) for non-decaying potentials V. We give a full asymptotic expansion of the spectral shift function for a pair of such operators in the high energy limit. In particular for asymptotically homogeneous potentials W at infinity of degree zero, we also study the semiclassical asymptotics to give a Weyl formula of the spectral shift function above the threshold max W and Mourre estimates in the range of W except at its critical values.


Author(s):  
JULIEN MAYRAND ◽  
CHARLES SENÉCAL ◽  
SIMON ST–AMANT

Abstract We consider the three-dimensional sloshing problem on a triangular prism whose angles with the sloshing surface are of the form ${\pi}/{2q}$ , where q is an integer. We are interested in finding a two-term asymptotic expansion of the eigenvalue counting function. When both angles are ${\pi}/{4}$ , we compute the exact value of the second term. As for the general case, we conjecture an asymptotic expansion by constructing quasimodes for the problem and computing the counting function of the related quasi-eigenvalues. These quasimodes come from solutions of the sloping beach problem and correspond to two kinds of waves, edge waves and surface waves. We show that the quasi-eigenvalues are exponentially close to real eigenvalues of the sloshing problem. The asymptotic expansion of their counting function is closely related to a lattice counting problem inside a perturbed ellipse where the perturbation is in a sense random. The contribution of the angles can then be detected through that perturbation.


Author(s):  
A. M. Davie

AbstractWe develop an asymptotic expansion for small time of the density of the solution of a non-degenerate system of stochastic differential equations with smooth coefficients, and apply this to the stepwise approximation of solutions. The asymptotic expansion, which takes the form of a multivariate Edgeworth-type expansion, is obtained from the Kolmogorov forward equation using some standard PDE results. To generate one step of the approximation to the solution, we use a Cornish–Fisher type expansion derived from the Edgeworth expansion. To interpret the approximation generated in this way as a strong approximation we use couplings between the (normal) random variables used and the Brownian path driving the SDE. These couplings are constructed using techniques from optimal transport and Vaserstein metrics. The type of approximation so obtained may be regarded as intermediate between a conventional strong approximation and a weak approximation. In principle approximations of any order can be obtained, though for higher orders the algebra becomes very heavy. In order 1/2 the method gives the usual Euler approximation; in order 1 it gives a variant of the Milstein method, but which needs only normal variables to be generated. However the method is somewhat limited by the non-degeneracy requirement.


Author(s):  
Rishabh Agnihotri

In 1981, Zagier conjectured that the Lambert series associated to the weight 12 cusp form [Formula: see text] should have an asymptotic expansion in terms of the nontrivial zeros of the Riemann zeta function. This conjecture was proven by Hafner and Stopple. In 2017 and 2019, Chakraborty et al. established an asymptotic relation between Lambert series associated to any primitive cusp form (for full modular group, congruence subgroup and in Maass form case) and the nontrivial zeros of the Riemann zeta function. In this paper, we study Lambert series associated with primitive Hilbert modular form and establish similar kind of asymptotic expansion.


Sign in / Sign up

Export Citation Format

Share Document