Enhanced Load Balancer with Multilayer Processing Architecture for Heavy Load Over Cloud Network

Author(s):  
Navdeep Singh Randhawa ◽  
Mandeep Dhami ◽  
Parminder Singh
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Gang Ren ◽  
Jingfeng Ma ◽  
Shunchao Wang ◽  
Jingcai Yu
Keyword(s):  

2020 ◽  
Author(s):  
Himadri Biswas ◽  
Sudipta Sahana ◽  
Priyajit Sen ◽  
Debabrata Sarddar

Author(s):  
Ronnie W. Smith ◽  
D. Richard Hipp

As spoken natural language dialog systems technology continues to make great strides, numerous issues regarding dialog processing still need to be resolved. This book presents an exciting new dialog processing architecture that allows for a number of behaviors required for effective human-machine interactions, including: problem-solving to help the user carry out a task, coherent subdialog movement during the problem-solving process, user model usage, expectation usage for contextual interpretation and error correction, and variable initiative behavior for interacting with users of differing expertise. The book also details how different dialog problems in processing can be handled simultaneously, and provides instructions and in-depth result from pertinent experiments. Researchers and professionals in natural language systems will find this important new book an invaluable addition to their libraries.


Author(s):  
C.R. Rupp ◽  
M. Landguth ◽  
T. Garverick ◽  
E. Gomersall ◽  
H. Holt ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Peiyu He ◽  
Qinrong Qian ◽  
Yun Wang ◽  
Hong Liu ◽  
Erkuo Guo ◽  
...  

Slewing bearings are widely used in industry to provide rotary support and carry heavy load. The load-carrying capacity is one of the most important features of a slewing bearing, and needs to be calculated cautiously. This paper investigates the effect of mesh size on the finite element (FE) analysis of the carrying capacity of slewing bearings. A local finite element contact model of the slewing bearing is firstly established, and verified using Hertz contact theory. The optimal mesh size of finite element model under specified loads is determined by analyzing the maximum contact stress and the contact area. The overall FE model of the slewing bearing is established and strain tests were performed to verify the FE results. The effect of mesh size on the carrying capacity of the slewing bearing is investigated by analyzing the maximum contact load, deformation, and load distribution. This study of finite element mesh size verification provides an important guidance for the accuracy and efficiency of carrying capacity of slewing bearings.


Sign in / Sign up

Export Citation Format

Share Document