Fuzzy Reasoning Based on Propositional Modal Logic

Author(s):  
Zaiyue Zhang ◽  
Yuefei Sui ◽  
Cungen Cao
2006 ◽  
Vol 368 (1-2) ◽  
pp. 149-160 ◽  
Author(s):  
Zaiyue Zhang ◽  
Yuefei Sui ◽  
Cungen Cao ◽  
Guohua Wu

1982 ◽  
Vol 47 (1) ◽  
pp. 191-196 ◽  
Author(s):  
George Boolos

Let ‘ϕ’, ‘χ’, and ‘ψ’ be variables ranging over functions from the sentence letters P0, P1, … Pn, … of (propositional) modal logic to sentences of P(eano) Arithmetic), and for each sentence A of modal logic, inductively define Aϕ by[and similarly for other nonmodal propositional connectives]; andwhere Bew(x) is the standard provability predicate for PA and ⌈F⌉ is the PA numeral for the Gödel number of the formula F of PA. Then for any ϕ, (−□⊥)ϕ = −Bew(⌈⊥⌉), which is the consistency assertion for PA; a sentence S is undecidable in PA iff both and , where ϕ(p0) = S. If ψ(p0) is the undecidable sentence constructed by Gödel, then ⊬PA (−□⊥→ −□p0 & − □ − p0)ψ and ⊢PA(P0 ↔ −□⊥)ψ. However, if ψ(p0) is the undecidable sentence constructed by Rosser, then the situation is the other way around: ⊬PA(P0 ↔ −□⊥)ψ and ⊢PA (−□⊥→ −□−p0 & −□−p0)ψ. We call a sentence S of PA extremely undecidable if for all modal sentences A containing no sentence letter other than p0, if for some ψ, ⊬PAAψ, then ⊬PAAϕ, where ϕ(p0) = S. (So, roughly speaking, a sentence is extremely undecidable if it can be proved to have only those modal-logically characterizable properties that every sentence can be proved to have.) Thus extremely undecidable sentences are undecidable, but neither the Godel nor the Rosser sentence is extremely undecidable. It will follow at once from the main theorem of this paper that there are infinitely many inequivalent extremely undecidable sentences.


2014 ◽  
Vol 7 (3) ◽  
pp. 439-454 ◽  
Author(s):  
PHILIP KREMER

AbstractIn the topological semantics for propositional modal logic, S4 is known to be complete for the class of all topological spaces, for the rational line, for Cantor space, and for the real line. In the topological semantics for quantified modal logic, QS4 is known to be complete for the class of all topological spaces, and for the family of subspaces of the irrational line. The main result of the current paper is that QS4 is complete, indeed strongly complete, for the rational line.


1985 ◽  
Vol 50 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Michael C. Nagle ◽  
S. K. Thomason

Our purpose is to delineate the extensions (normal and otherwise) of the propositional modal logic K5. We associate with each logic extending K5 a finitary index, in such a way that properties of the logics (for example, inclusion, normality, and tabularity) become effectively decidable properties of the indices. In addition we obtain explicit finite axiomatizations of all the extensions of K5 and an abstract characterization of the lattice of such extensions.This paper refines and extends the Ph.D. thesis [2] of the first-named author, who wishes to acknowledge his debt to Brian F. Chellas for his considerable efforts in directing the research culminating in [2] and [3]. We also thank W. J. Blok and Gregory Cherlin for observations which greatly simplified the proofs of Theorem 3 and Corollary 10.By a logic we mean a set of formulas in the countably infinite set Var of propositional variables and the connectives ⊥, →, and □ (other connectives being used abbreviatively) which contains all the classical tautologies and is closed under detachment and substitution. A logic is classical if it is also closed under RE (from A↔B infer □A ↔□B) and normal if it is classical and contains □ ⊤ and □ (P → q) → (□p → □q). A logic is quasi-classical if it contains a classical logic and quasi-normal if it contains a normal logic. Thus a quasi-normal logic is normal if and only if it is classical, and if and only if it is closed under RN (from A infer □A).


1983 ◽  
Vol 48 (2) ◽  
pp. 488-495 ◽  
Author(s):  
R. A. Bull

Rough Sets ◽  
2002 ◽  
pp. 159-172
Author(s):  
Lech Polkowski

2018 ◽  
Vol 11 (3) ◽  
pp. 507-518
Author(s):  
PHILIP KREMER

AbstractWe add propositional quantifiers to the propositional modal logic S4 and to the propositional intuitionistic logic H, introducing axiom schemes that are the natural analogs to axiom schemes typically used for first-order quantifiers in classical and intuitionistic logic. We show that the resulting logics are sound and complete for a topological semantics extending, in a natural way, the topological semantics for S4 and for H.


Sign in / Sign up

Export Citation Format

Share Document