scholarly journals Mixed Search Number of Permutation Graphs

Author(s):  
Pinar Heggernes ◽  
Rodica Mihai
Keyword(s):  
2009 ◽  
Vol 157 (12) ◽  
pp. 2611-2619 ◽  
Author(s):  
David B. Chandler ◽  
Maw-Shang Chang ◽  
Ton Kloks ◽  
Jiping Liu ◽  
Sheng-Lung Peng
Keyword(s):  

1994 ◽  
Vol 49 (1) ◽  
pp. 45-50 ◽  
Author(s):  
C. Rhee ◽  
Y.Daniel Liang ◽  
S.K. Dhall ◽  
S. Lakshmivarahan

2015 ◽  
Vol 243 (3) ◽  
pp. 763-773
Author(s):  
Yerim Chung ◽  
Jean-François Culus ◽  
Marc Demange

Algorithmica ◽  
2016 ◽  
Vol 78 (3) ◽  
pp. 914-944 ◽  
Author(s):  
Florent Foucaud ◽  
George B. Mertzios ◽  
Reza Naserasr ◽  
Aline Parreau ◽  
Petru Valicov

Networks ◽  
1982 ◽  
Vol 12 (4) ◽  
pp. 429-437 ◽  
Author(s):  
D. Rotem ◽  
J. Urrutia

2011 ◽  
Vol 7 (2) ◽  
pp. 289-296 ◽  
Author(s):  
Valentina Cacchiani ◽  
Alberto Caprara ◽  
Paolo Toth

10.37236/4074 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Aistis Atminas ◽  
Robert Brignall ◽  
Nicholas Korpelainen ◽  
Vadim Lozin ◽  
Vincent Vatter

We consider well-quasi-order for classes of permutation graphs which omit both a path and a clique. Our principle result is that the class of permutation graphs omitting $P_5$ and a clique of any size is well-quasi-ordered. This is proved by giving a structural decomposition of the corresponding permutations. We also exhibit three infinite antichains to show that the classes of permutation graphs omitting $\{P_6,K_6\}$, $\{P_7,K_5\}$, and $\{P_8,K_4\}$ are not well-quasi-ordered.


Sign in / Sign up

Export Citation Format

Share Document