Optimal Features Subset Selection Using Genetic Algorithms for Iris Recognition

Author(s):  
Kaushik Roy ◽  
Prabir Bhattacharya
Author(s):  
KAUSHIK ROY ◽  
PRABIR BHATTACHARYA

Most existing iris recognition algorithms focus on the processing and recognition of the ideal iris images that are acquired in a controlled environment. In this paper, we process the nonideal iris images that are captured in an unconstrained situation and are affected severely by gaze deviation, eyelids and eyelashes occlusions, nonuniform intensity, motion blur, reflections, etc. The proposed iris recognition algorithm has three novelties as compared to the previous works; firstly, we deploy a region-based active contour model to segment a nonideal iris image with intensity inhomogeneity; secondly, genetic algorithms (GAs) are deployed to select the subset of informative texture features without compromising the recognition accuracy; Thirdly, to speed up the matching process and to control the misclassification error, we apply a combined approach called the adaptive asymmetrical support vector machines (AASVMs). The verification and identification performance of the proposed scheme is validated on three challenging iris image datasets, namely, the ICE 2005, the WVU Nonideal, and the UBIRIS Version 1.


2009 ◽  
Vol 14 (1) ◽  
pp. 12-15
Author(s):  
Mohd Saberi Mohamad ◽  
Sigeru Omatu ◽  
Safaai Deris ◽  
Michifumi Yoshioka

2007 ◽  
Vol 49 (10-11) ◽  
pp. 801-810 ◽  
Author(s):  
Salvatore Casale ◽  
Alessandra Russo ◽  
Salvatore Serrano

2017 ◽  
Vol 10 (34) ◽  
pp. 1-12 ◽  
Author(s):  
C. Raghavendra ◽  
A. Kumaravel ◽  
S. Sivasuramanyan ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document