IMPROVEMENT OF IRIS RECOGNITION PERFORMANCE USING REGION-BASED ACTIVE CONTOURS, GENETIC ALGORITHMS AND SVMs

Author(s):  
KAUSHIK ROY ◽  
PRABIR BHATTACHARYA

Most existing iris recognition algorithms focus on the processing and recognition of the ideal iris images that are acquired in a controlled environment. In this paper, we process the nonideal iris images that are captured in an unconstrained situation and are affected severely by gaze deviation, eyelids and eyelashes occlusions, nonuniform intensity, motion blur, reflections, etc. The proposed iris recognition algorithm has three novelties as compared to the previous works; firstly, we deploy a region-based active contour model to segment a nonideal iris image with intensity inhomogeneity; secondly, genetic algorithms (GAs) are deployed to select the subset of informative texture features without compromising the recognition accuracy; Thirdly, to speed up the matching process and to control the misclassification error, we apply a combined approach called the adaptive asymmetrical support vector machines (AASVMs). The verification and identification performance of the proposed scheme is validated on three challenging iris image datasets, namely, the ICE 2005, the WVU Nonideal, and the UBIRIS Version 1.

Author(s):  
Akinola Samuel Akinfende ◽  
Agbotiname Lucky Imoize ◽  
Olumide Simeon Ajose

<span>Iris image segmentation process based on graphical user interface (GUI) to accurately localize the iris structure is presented in this paper. The major challenge confronting the precision of an iris recognition model is how to determine the accuracy of the iris segmentation and localization. There are varying parameters that introduce constraints during feature extraction and these greatly affect the matching performance during iris localization. To this end, the Integro-differential operator, which involves the detection of inner and outer regions of the iris, and the circular hough transform, which is capable of detecting the circular boundary from the edge mapping were investigated, and an active contour model was evolved. In the evolved model, an emerging curve mapped with the zeros of the data set function is experimentally exploited. To demonstrate the suitability of the model for precise iris recognition, its parameters were compared against other related models. Simulation results show that the model has higher flexibility of substitution of images, and the images could be analyzed more accurately with less false rejections (FR) and false acceptance (FA) in comparison with the integro-differential operator. This implies that images could be analyzed faster using the evolved model, and easily substituted especially in situations where the need to care for numerous eye patients occur.</span>


Author(s):  
Ying-Li Han ◽  
Rae-Hong Park

Biometric information is widely used in user identification system. Because of the unique and invariant properties of the iris through a lifetime, iris recognition is one of the most stable and reliable means in biometric identification. Extracting distinguishable iris features for iris recognition is very important. In this paper, for capturing effective texture features that represent the complex directional structures of an iris image, a new iris recognition method using the nonsubsampled contourlet transform (NSCT) features is proposed. With the shift-invariance, multiscale, and multidirection properties, significant NSCT coefficient features along the radial and angular directions in an iris image can be represented efficiently. Iris segmentation and normalization are considered at first as pre-processing. The modified normalized iris image is obtained from the normalized iris regions for extracting the robust iris features, and then is filtered with the NSCT to obtain the distinct coefficient features in each directional subband. Next, using the NSCT coefficients in each subband, an iris code vector is constructed for iris matching. Comparison of experimental results of the proposed and existing methods with three databases show the effectiveness of the proposed NSCT feature-based iris recognition algorithm, in terms of the three performance measures.


Author(s):  
Zaidah Ibrahim ◽  
Nurbaity Sabri ◽  
Nur Nabilah Abu Mangshor

This research investigates the application of texture features for leaf recognition for herbal plant identification.  Malaysia is rich with herbal plants but not many people can identify them and know about their uses.   Preservation of the knowledge of these herb plants is important since it enables the general public to gain useful knowledge which they can apply whenever necessary.  Leaf image is chosen for plant recognition since it is available and visible all the time.   Unlike flowers that are not always available or roots that are not visible and not easy to obtain, leaf is the most abundant type of data available in botanical reference collections.  A comparative study has been conducted among three popular texture features that are Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP) and Speeded-Up Robust Features (SURF) with multiclass Support Vector Machine (SVM) classifier.  A new leaf dataset has been constructed from ten different herb plants.  Experimental results using the new constructed dataset and Flavia, an existing dataset, indicate that HOG and LBP produce similar leaf recognition performance and they are better than SURF.


2012 ◽  
Vol 198-199 ◽  
pp. 310-313
Author(s):  
Jing Lei Kang ◽  
Ye Cai Guo

Feature matching is a most important step of the iris recognition algorithm, directly determining the success or failure of iris recognition. In order to have a better performance in the iris recognition, a method of iris recognition based on local gray minimum values is proposed. This method firstly records the position of local gray minimum points in the iris region; the minimum consolidation method is used to compress the characteristic points, and then encoding the compression iris image after extracting features. Finally, do exclusive OR (XOR) operation between encoding and template information to get the final recognition results. The computer simulations show the proposed method has very good recognition performance.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1308 ◽  
Author(s):  
Mohsen Jenadeleh ◽  
Marius Pedersen ◽  
Dietmar Saupe

Image quality is a key issue affecting the performance of biometric systems. Ensuring the quality of iris images acquired in unconstrained imaging conditions in visible light poses many challenges to iris recognition systems. Poor-quality iris images increase the false rejection rate and decrease the performance of the systems by quality filtering. Methods that can accurately predict iris image quality can improve the efficiency of quality-control protocols in iris recognition systems. We propose a fast blind/no-reference metric for predicting iris image quality. The proposed metric is based on statistical features of the sign and the magnitude of local image intensities. The experiments, conducted with a reference iris recognition system and three datasets of iris images acquired in visible light, showed that the quality of iris images strongly affects the recognition performance and is highly correlated with the iris matching scores. Rejecting poor-quality iris images improved the performance of the iris recognition system. In addition, we analyzed the effect of iris image quality on the accuracy of the iris segmentation module in the iris recognition system.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 709
Author(s):  
Ge-Liang Lv ◽  
Lei Shen ◽  
Yu-Dong Yao ◽  
Hua-Xia Wang ◽  
Guo-Dong Zhao

Due to its portability, convenience, and low cost, incompletely closed near-infrared (ICNIR) imaging equipment (mixed light reflection imaging) is used for ultra thin sensor modules and have good application prospects. However, equipment with incompletely closed structure also brings some problems. Some finger vein images are not clear and there are sparse or even missing veins, which results in poor recognition performance. For these poor quality ICNIR images, however, there is additional fingerprint information in the image. The analysis of ICNIR images reveals that the fingerprint and finger vein in a single ICNIR image can be enhanced and separated. We propose a feature-level fusion recognition algorithm using a single ICNIR finger image. Firstly, we propose contrast limited adaptive histogram equalization (CLAHE) and grayscale normalization to enhance fingerprint and finger vein texture, respectively. Then we propose an adaptive radius local binary pattern (ADLBP) feature combined with uniform pattern to extract the features of fingerprint and finger vein. It solves the problem that traditional local binary pattern (LBP) is unable to describe the texture features of different sizes in ICNIR images. Finally, we fuse the feature vectors of ADLBP block histogram for a fingerprint and finger vein, and realize feature-layer fusion recognition by a threshold decision support vector machine (T-SVM). The experimentation results showed that the performance of the proposed algorithm was noticeably better than that of the single model recognition algorithm.


2018 ◽  
Vol 1 (2) ◽  
pp. 34-44
Author(s):  
Faris E Mohammed ◽  
Dr. Eman M ALdaidamony ◽  
Prof. A. M Raid

Individual identification process is a very significant process that resides a large portion of day by day usages. Identification process is appropriate in work place, private zones, banks …etc. Individuals are rich subject having many characteristics that can be used for recognition purpose such as finger vein, iris, face …etc. Finger vein and iris key-points are considered as one of the most talented biometric authentication techniques for its security and convenience. SIFT is new and talented technique for pattern recognition. However, some shortages exist in many related techniques, such as difficulty of feature loss, feature key extraction, and noise point introduction. In this manuscript a new technique named SIFT-based iris and SIFT-based finger vein identification with normalization and enhancement is proposed for achieving better performance. In evaluation with other SIFT-based iris or SIFT-based finger vein recognition algorithms, the suggested technique can overcome the difficulties of tremendous key-point extraction and exclude the noise points without feature loss. Experimental results demonstrate that the normalization and improvement steps are critical for SIFT-based recognition for iris and finger vein , and the proposed technique can accomplish satisfactory recognition performance. Keywords: SIFT, Iris Recognition, Finger Vein identification and Biometric Systems.   © 2018 JASET, International Scholars and Researchers Association    


2021 ◽  
pp. 016173462199809
Author(s):  
Dhurgham Al-karawi ◽  
Hisham Al-Assam ◽  
Hongbo Du ◽  
Ahmad Sayasneh ◽  
Chiara Landolfo ◽  
...  

Significant successes in machine learning approaches to image analysis for various applications have energized strong interest in automated diagnostic support systems for medical images. The evolving in-depth understanding of the way carcinogenesis changes the texture of cellular networks of a mass/tumor has been informing such diagnostics systems with use of more suitable image texture features and their extraction methods. Several texture features have been recently applied in discriminating malignant and benign ovarian masses by analysing B-mode images from ultrasound scan of the ovary with different levels of performance. However, comparative performance evaluation of these reported features using common sets of clinically approved images is lacking. This paper presents an empirical evaluation of seven commonly used texture features (histograms, moments of histogram, local binary patterns [256-bin and 59-bin], histograms of oriented gradients, fractal dimensions, and Gabor filter), using a collection of 242 ultrasound scan images of ovarian masses of various pathological characteristics. The evaluation examines not only the effectiveness of classification schemes based on the individual texture features but also the effectiveness of various combinations of these schemes using the simple majority-rule decision level fusion. Trained support vector machine classifiers on the individual texture features without any specific pre-processing, achieve levels of accuracy between 75% and 85% where the seven moments and the 256-bin LBP are at the lower end while the Gabor filter is at the upper end. Combining the classification results of the top k ( k = 3, 5, 7) best performing features further improve the overall accuracy to a level between 86% and 90%. These evaluation results demonstrate that each of the investigated image-based texture features provides informative support in distinguishing benign or malignant ovarian masses.


Author(s):  
Htwe Pa Pa Win ◽  
Phyo Thu Thu Khine ◽  
Khin Nwe Ni Tun

This paper proposes a new feature extraction method for off-line recognition of Myanmar printed documents. One of the most important factors to achieve high recognition performance in Optical Character Recognition (OCR) system is the selection of the feature extraction methods. Different types of existing OCR systems used various feature extraction methods because of the diversity of the scripts’ natures. One major contribution of the work in this paper is the design of logically rigorous coding based features. To show the effectiveness of the proposed method, this paper assumed the documents are successfully segmented into characters and extracted features from these isolated Myanmar characters. These features are extracted using structural analysis of the Myanmar scripts. The experimental results have been carried out using the Support Vector Machine (SVM) classifier and compare the pervious proposed feature extraction method.


Sign in / Sign up

Export Citation Format

Share Document